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ABSTRACT

Using a process study model, the effect of mixed layer submesoscale instabilities on the lateral mixing of

passive tracers in the pycnocline is explored. Mixed layer eddies that are generated from the baroclinic in-

stability of a front within the mixed layer are found to penetrate into the pycnocline leading to an eddying flow

field that acts to mix properties laterally along isopycnal surfaces. The mixing of passive tracers released on

such isopycnal surfaces is quantified by estimating the variance of the tracer distribution over time. The

evolution of the tracer variance reveals that the flow undergoes three different turbulent regimes. The first

regime, lasting about 3–4 days (about 5 inertial periods) exhibits near-diffusive behavior; dispersion of the

tracer grows nearly linearly with time. In the second regime, which lasts for about 10 days (about 14 inertial

periods), tracer dispersion exhibits exponential growth because of the integrated action of high strain rates

created by the instabilities. In the third regime, tracer dispersion follows Richardson’s power law. The

Nakamura effective diffusivity is used to study the role of individual dynamical filaments in lateral mixing.

The filaments, which carry a high concentration of tracer, are characterized by the coincidence of large

horizontal strain rate with large vertical vorticity. Within filaments, tracer is sheared without being dispersed,

and consequently the effective diffusivity is small in filaments. While the filament centers act as barriers to

transport, eddy fluxes are enhanced at the filament edges where gradients are large.

1. Introduction

In the oceanic mixed layer (ML), atmospheric forcing,

ocean dynamics, and their interplay act to leave the

surface waters well mixed. While the ML waters are

mixed in the vertical, lateral gradients in temperature

and salinity are a common feature. Processes responsible

for the creation of lateral gradients in temperature and

salinity in the open ocean include nonhomogeneous heat

and freshwater fluxes, wind mixing associated with the

passage of a storm, and ocean convection. Near the coast,

the upwelling of deep water, tidal mixing, and estuarine

advection of freshwater create lateral gradients in prop-

erties. Such horizontal gradients in the temperature and

salinity can compensate each other in their contribution

to density (Rudnick and Ferrari 1999) or give rise to ML

density fronts.

ML fronts in the ocean are dynamically unstable. They

evolve in response to geostrophic adjustment (Tandon

and Garrett 1994, 1995; Young 1994) while undergoing

baroclinic instability (Molemaker et al. 2005; Boccaletti

et al. 2007) and frontogenesis (Hoskins and Bretherton

1972; Capet et al. 2008a,b). A departure from quasi-

geostrophic dynamics in the ML results in rich submeso-

scale dynamics. Frontogenesis, which can be enhanced

through interaction with the mesoscale strain field (Bishop

1993; McWilliams et al. 2009a,b), is able to transfer energy

from the mesoscale to the small scales where it is dissipated

(Capet et al. 2008c). Fronts give rise to submesoscale
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filaments of intense vertical vorticity with enhanced

vertical velocities (Spall 1997; Mahadevan and Tandon

2006), which are significant for the transfer of nutrients

to the surface euphotic layer (Levy et al. 2001). The

ageostrophic secondary circulation that results in verti-

cal velocities can be further intensified by vertical mix-

ing (Nagai et al. 2006) and nonlinear Ekman effects

(Thomas and Lee 2005). The presence of weak stratifi-

cation and large vertical shears in the ML leads to

ageostrophic baroclinic instabilities (Stone 1966, 1970,

1971), which have much faster growth rates than baroclinic

instability in the pycnocline (Boccaletti et al. 2007). De-

spite being adiabatic, ML baroclinic instability results in

the restratification of the ML (Fox-Kemper et al. 2008).

In contrast to earlier studies that have focused on the

role of submesoscale dynamics on vertical advection and

mixing, as well as the rearrangement of buoyancy in the

ML, the aim of this study is to infer the importance of

submesoscale dynamics on lateral mixing along isopycnal

surfaces in the oceanic pycnocline. This is motivated by

observations in which rates of lateral mixing were found to

be time and scale dependent (Okubo 1970), and the in-

ferred horizontal diffusivity far exceeded the values that

could be explained by shear dispersion (Sundermeyer and

Price 1998). What are the processes that lead to enhanced

lateral dispersion on scales of 0.1–10 km? Is such mixing

driven by dynamical instabilities and thereby associated

with the growth and evolution of such instabilities? It has

been previously hypothesized that enhanced lateral mix-

ing in the pycnocline results from the generation of mixed

patches generated by internal wave breaking that spin up

under the action of gravity and rotation to form vortical

modes or eddies (Sundermeyer et al. 2005; Sundermeyer

and Lelong 2005). In this study, we neglect vortical modes,

and instead examine lateral mixing resulting from the

submesoscale flow field generated by ML eddies.

A natural question is to ask whether the submesoscale

dynamics of the ML can impact the pycnocline. We ad-

dress this question with a modeling process study of the

ML and pycnocline within a limited domain (approxi-

mately 200 km 3 100 km). Our three-dimensional nu-

merical ocean model is initialized with a zonally oriented

ML front, overlying an initially quiescent pycnocline with

flat isopycnals. The model domain is a zonally periodic

channel. The ML is chosen to be deep (;200 m) so as to

generate a submesoscale flow field without any forcing.

The model setup is described in section 3 and in the

appendix. The numerical experiments capture the growth

of submesoscale instabilities resulting in the spindown

of the front. In contrast, oceanic flows are highly developed

and most often forced by surface fluxes. Yet, submesoscale

instabilities are frequently triggered on the edges of meso-

scale fronts and meanders as evidenced in high-resolution

satellite imagery. We think of this process study as

examining lateral mixing during the growth phase of

submesoscale ML instability, which could be viewed

as growing on the edge of an underlying mesoscale

feature.

In what follows, we present the analysis of numerical

experiments used to infer tracer mixing that is driven by

submesoscale ML eddies generated from various frontal

configurations. In section 2 we also review theoretical

results for tracer dispersion and particle statistics that

are useful for understanding tracer dispersion the sub-

mesoscale context. A reader familiar with these could

skip directly to section 3, which describes our numerical

experiments. Our results, in section 4a, start with a de-

scription of submesoscale signatures in the pycnocline

arising from surface ML instabilities. To study mixing, we

introduce a passive tracer along the initially flat isopycnal

surfaces at various depths below the ML. As the flow

develops, we use the evolution of the dye distribution to

infer the rate of lateral mixing. Our methods of analysis

are based on previous observational studies where dye

was used to infer lateral mixing—for example, during the

North Atlantic Tracer Release Experiment (NATRE)

(Ledwell et al. 1998; Sundermeyer and Price 1998; Polzin

and Ferrari 2004) and on the New England continental

shelf (Houghton 1997; Sundermeyer and Ledwell 2001;

Ledwell et al. 2004). Since the ML front and geostrophic

flow field are oriented west to east, and since our model

domain is zonally periodic, we lay down the dye in east–

west, x-oriented streaks across the domain, and estimate

dispersion in the cross-front, y direction. We then de-

scribe the time evolution of the tracer concentration

variance for streaks of tracer released on different iso-

pycnal surfaces in section 4b. We use the variance analysis

to obtain an integrated measure of lateral mixing and as-

sess its dependence on ML dynamics. The mixing invoked

by this mechanism is compared with values estimated for

other processes in section 4c. In section 4d, we estimate the

effective diffusivity of an individual filament to mechanis-

tically understand the structure and role of submesoscale

filaments in mixing. Finally, we present some points of

discussion and our conclusions in sections 5 and 6.

2. Theoretical background

a. ML instabilities

In the oceanic ML, ageostrophic baroclinic instability

gives rise to dynamical features such as ML eddies

and submesoscale filaments with typical length scales

(Ls ; 1–10 km) that are much smaller than the Rossby

radius of deformation (Ld ; 10–100 km) associated with

the pycnocline. Submesoscale dynamics are characterized
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by the Rossby (R0) and Richardson (Ri) numbers at-

taining O(1) values locally, where R0 [ z/f is the ratio of

the vertical component of relative vorticity z 5 yx 2 uy to

planetary vorticity f, and Ri [ N2/U2
z , where Uz

2 5 uz
2 1

yz
2 is the square of the vertical shear of the horizontal ve-

locity (u, y). The vertical and horizontal gradients of the

buoyancy b [ 2g[(r 2 r0)/r0], defined in terms of the

density r and a reference value r0, give the square of

the buoyancy frequency, N2 5 bz and its horizontal

equivalent, defined here only in terms of the cross-front

direction as M2 5 by. For an ML front aligned in the zonal

direction and in thermal wind balance, Ri ; O(1) gives

rise to the balance (Tandon and Garrett 1994; Young

1994; Tandon and Garrett 1995)

N2 ;
M4

f 2
. (1)

Such fronts develop large relative vorticity [z ; O( f)]

and exhibit ageostrophic baroclinic instability, as stud-

ied by Stone (1966, 1970, 1971). The growth rate of the

ageostrophic instabilities (Eldevik and Dysthe 2002) in

terms of Ri and the Burger number Bu 5 (Ls/L)2, where

L is the width of the front and Ls 5 M2H/f 2 is the Rossby

radius within the ML of depth H, is given by

st 5 f
5/54

1 1 Ri 1 Ri � Bu

� �1/2

. (2)

The wavelength for the linear growth of the most un-

stable perturbation is given by (Eldevik and Dysthe 2002)

l 5 f0Ls 1 1
1

Ri
1

Bu

2

� �1/2

, (3)

where f
0

5 4p/
ffiffiffiffiffi
10
p

’ 4.

For Bu 5 0, (2) reduces to the formula for the growth

rate found by Stone (1966), which compares well with the

analytical solutions found by Eady (1949) and Fjørtoft

(1950) for Ri� 1 and Ri 5 0, respectively. It should be

noted that ML instabilities act to modify both by and the

ML depth H through restratification (Boccaletti et al.

2007; Fox-Kemper et al. 2008; Mahadevan et al. 2010),

altering both Ri and Bu, and thereby the growth rate of

the ML instabilities according to (2).

Given (1) and the thermal wind balance uz 5 2by/f,

where u is the alongfront velocity, the cross-front eddy

velocity y9 scales as (Haine and Marshall 1998; Fox-

Kemper et al. 2008)

y9 ; juj; juzjH ;
M2H

f
, (4)

where H is the initial depth of the ML. It can thus be

seen that the submeso length scale associated with the

inertial time scale ;O( f21) is given by LS ; M2H/f 2.

While these scaling arguments apply to the ML, the

theory can be extended to estimate the vertical extent of

the signatures into the pycnocline. Scaling (Pedlosky

1987) suggests that the e-folding depth of penetration for

an ML eddy is

D ’
fLs

N
, (5)

where N, the buoyancy frequency in the pycnocline, is

assumed to be uniform.

b. Turbulent dispersion of tracers

To examine the effect of submesoscale ML eddies on

lateral mixing, we consider the evolution of a tracer with

concentration C(x, y, z, t) as described by the advection–

diffusion equation

›C

›t
1 u � $C 5 $H � (kH$HC) 1

›

›z
kz

›C

›z

� �
, (6)

where kH is the horizontal diffusivity of the tracer, as-

sumed to be isotropic, and kz is the vertical diffusivity of

the tracer. Because the slope of isopycnal surfaces in the

pycnocline is extremely small, it will suffice to consider the

analysis in 2D (x, y), while projecting C and the horizontal

velocity (u, y) onto the isopycnal surfaces. We focus on

along-isopycnal (2D) dispersion of tracer because the ML

instabilities are adiabatic, particularly in the pycnocline.

Calculations in which we included the vertical displace-

ment of tracer showed no departure from our 2D results.

Moments of the tracer concentration are used to study

the turbulent dispersion of the tracer along an isopycnal

surface in response to the eddying flow (Thiffeault 2008).

Using the notation h�i5
Ð

(�) dx dyj
r
, the zero moment

hCi defines the total amount of tracer, such that ›thCi5 0

for a conserved tracer.

The zonal periodicity of our numerical experiments

lends itself to a simplification; we need consider only the

meridional (y directional) moments. The vector of first

moments and tensor of second moments are, thus, both

reduced to just one component each. The first moment,

normalized by the total tracer

sy 5
hyCi
hCi , (7)

defines the y displacement of the center of mass of the

tracer. The second moment (normalized by the total

tracer) minus the first moment squared,
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syy 5
hy2Ci
hCi 2 s2

y, (8)

defines the tracer variance or dispersion in the y di-

rection. Fickian diffusivity would cause tracer dispersion

(syy) to increase linearly with time as (›/›t)syy ; Ky,

where Ky is the diffusivity.

c. Particle statistics

Particle statistics offers a theoretical basis for un-

derstanding dispersion. Passive tracer dispersion statistics

can be analyzed in terms of the statistical history of

neutrally buoyant particles without inertia. For example,

the method was used to study tracer dispersion by surface

waves (Herterich and Hasselmann 1982). If particles are

seeded in a patch of passive tracer, after an initial dif-

fusion time the particles and the tracers will have the

same domain of occupation (Garrett 1983). The disper-

sion of a patch of particles is a function of the strain

rate g 5 [(ux 2 yy)2
1 (yx 2 uy)2]1/2. Initially, for time t ,

O(g21) the patch grows diffusively (Garrett 1983). The

initial period of small-scale diffusion lasts until the time

that the tracer patch begins to be influenced by sub-

mesoscale strain. For submesoscale dynamics, g 5 O(f)

(Mahadevan and Tandon 2006), so that for f 5 1024 s21

the initial diffusion period for the tracer caught in a sub-

mesoscale filament is only about 0.1 days. However, the

tracer streak is caught by an ensemble of several in-

termittent filaments, resulting in a weaker ensemble strain,

which results in a longer diffusive period.

The theory of dispersion statistics described in Bennett

(1984) and LaCasce (2008) allows us to study the evolution

and transition of dispersive behavior in time. Taking two

particles with initial separation in the meridional direction

y0 at the initial time t0, the relative diffusivity of the par-

ticles Ky at a later time t . t0 is defined as (Taylor 1921)

Ky [
1

2

d

dt
hy2i 5 hy0yi 1

ðt

t
0

hy(t)y(t)i dt, (9)

where y2(t) is the relative dispersion of the particles, y 5

(d/dt)y is the pair separation velocity, and the link be-

tween particle statistics and passive tracer is given by

y2(t) ; syy(t). Following Bennett (1984), it is possible to

express the mean square separation velocity as

d

dt
y

� �� 2�
5 2

ð‘

0
E(k)[1 2 J0(ky)] dk, (10)

where E(k) is the Eulerian kinetic energy wavenumber

spectrum and J0 is the first Bessel function. When the

particle separation scale is smaller than the length scale

of eddies then ky� 1 and 1 2 J0 ’ (1/4)k2y2. When the

separation scales larger than the eddy length scale then

ky � 1 and 1 2 J0 ’ 1. Assuming the power law de-

pendence E(k) } k2a, (10) can be separated as

d

dt
y

� �� 2�
5 2

ð1/y

0
k2a 1

4
k2y2

� �
dk 1 2

ð‘

1/y
k2adk, (11)

which has solution

d

dt
y

� �� 2�
5

1

2
y2 1

3 2 a
k32a

���1/y

0
1

2

1 2 a
k12a

���‘
1/y

. (12)

The first term of (12) diverges for a $ 3, while the sec-

ond term diverges for a # 1. As noted by Bennett (1984)

and LaCasce (2008), for intermediate values of the

spectral slope 1 , a , 3,

d

dt
y

� �� 2�
} ya21, (13)

so that

Ky } y(a11)/2. (14)

The dependence of Ky on the particle separation thus di-

rectly reflects the spectral slope a. In this case the disper-

sion of particle pairs is dominated by eddies of the same

size as the separation and the dispersion is termed ‘‘local.’’

For a $ 3 the dispersion is dominated by eddies larger

than the separation scale and it is called ‘‘non local.’’ Given

a certain spectral slope a, Eq. (12) and, consequently, (9)

can be solved at different stages of evolution of the flow as

follows.

1) EARLY TIME

At early times, the particles are very close and the

velocity difference between the particles is approximately

constant. The tracer experiences Brownian-like disper-

sion. Following Einstein (1905) and Taylor (1921), for Ky

constant, syy varies linearly in time as

syy 5 4Kyt. (15)

2) INTERMEDIATE TIME

At intermediate times, the nearest particle pair ve-

locities are mutually correlated, but the particle sepa-

ration scale is still much smaller than the length scale of

eddies. In this period, the KE spectra has k23 dependence

(Kraichnan and Montgomery 1980) and ky� 1, so that

(12) and (9) give (Lin 1972)
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syy 5 exp(C1h1/3t) and (16)

Ky 5 C1h1/3syy, (17)

where C1 is a nondimensional constant, h 5 nhhj$zj2i is

the enstrophy dissipation rate, and nh is the momentum

viscosity. This period is also referred to as the enstrophy

inertial range. The exponential growth of relative dis-

persion (16) would also be expected for 3D turbulence,

but at much smaller scales than the scales resolved in our

numerical experiment.

3) LATER TIME

When the particle separation reaches synoptic scales,

for 2D turbulence and ky� 1 the KE spectra has k2(5/3)

dependence, so that (12) and (9) give (Richardson 1926;

Batchelor 1950)

syy 5 C2�t
3 and (18)

Ky 5 C1/3
2 �1/3s2/3

yy , (19)

where C2 is a nondimensional constant and �5 nhh($u)2i is

the energy dissipation rate. Equation (18) is referred to as

Richardson’s power law, while (19) represents Richardson’s
4/3 law for the particle separation y since syy ; y2. This

regime is also referred to as the energy inertial range.

The presence of different turbulent regimes is contro-

versial, both in the context of the atmosphere and the

ocean. In the atmosphere, the exponential growth de-

scribed by (16) has been observed by balloon experi-

ments launched near the tropopause in the Southern

Hemisphere (Morel and Larcheveque 1974; Er-El and

Peskin 1981). Lacorata et al. (2004), however, making use

of finite-scale Lyapunov exponents, reanalyzed the same

dataset to find that the growth followed Richardson’s law

(18). In the ocean, exponential growth has been observed

in the Gulf Stream region by subsurface floats (LaCasce

and Bower 2000). However, Ollitrault et al. (2005) and

Lumpkin and Elipot (2010) found Richardson growth in

the same region. Richardson’s law has been observed, for

example, by Stommel (1949), while exponential growth

has also been observed by J. Price (1981, unpublished

manuscript) though dye release experiments in the ML.

Further, a transition from exponential to Richardson-

type growth has been observed by surface drifters in the

Nordic Seas by Koszalka et al. (2009).

Finally, in the quasi-geostrophic limit, turbulence

theory predicts that both active tracers (e.g., enstrophy)

and passive tracers are cascaded with horizontal to

vertical aspect ratio N/f (Kraichnan 1967; Haynes and

Anglade 1997; Smith and Ferrari 2009).

d. Effective diffusivity of tracers

Effective diffusivity (Nakamura 1996; Winters and

D’Asaro 1996) is related to the complexity of the shape of

the area occupied by a certain value of tracer concen-

tration. Even though the effective diffusivity is calculated

as a function of tracer concentration, it is useful in char-

acterizing the role of specific spatial structures on mixing.

Effective diffusivity has been employed to study the mix-

ing of tracers by idealized Kelvin–Helmoltz billows

(Nakamura 1996; Winters and D’Asaro 1996)—the

stratospheric and tropospheric transport and mixing of

tracers in different dynamical regimes. Chaotic advec-

tion and the role of stratospheric polar vortices as bar-

riers to mixing tracers have been studied through both

observations (Nakamura and Ma 1997; Haynes and

Shuckburgh 2000a,b) and modeled flows (Shuckburgh

and Haynes 2003). It has also been used for oceanic

jets along the Antarctic Circumpolar Current that are

shown to act as barriers to mixing (Marshall et al. 2006;

Shuckburgh et al. 2009).

Under the approximation that the evolution of a cer-

tain tracer concentration class C takes place along iso-

pycnals in the interior, (6) can be written as a diffusion

equation

›C

›t
5

›

›A
L2

0Keff

›C

›A

� �
(20)

in area coordinates, where A(C, t) is the area of the

tracer concentration class C and

Keff 5 kH

L2
eq

L2
0

(21)

is the effective diffusivity. In (20)–(21) we make the

approximation that, along isopycnals in the interior, the

along-isopycnal diffusivity is the same as the horizontal

diffusivity kH. In (21), L2
0 is the area corresponding to

the minimum length of the tracer concentration class C

contours, and

L2
eq 5

1

›C

›A

� �2

›

›A

ð
A(C,t)

($C)2 dA (22)

is the area corresponding to the contours of the tracer

concentration C, deformed by the action of the straining

velocity field. For a careful derivation of (21) and (22)

see Nakamura (1996) and Winters and D’Asaro (1996).

Various approximations can be adopted to obtain

a value for L2
0. For the stratosphere, L2

0 can be obtained

because of the zonal symmetry of the flows and can be
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related to the slowest decaying mode of the diffusion

equation on a sphere (Shuckburgh and Haynes 2003).

For the Southern Ocean, the zonal distribution of tracer

allows a definition of L2
0 by applying a large horizontal

diffusivity to the domain in order to maintain zonal

symmetry (Marshall et al. 2006). In the present study, L2
0

is calculated as the initial value of L2
eq. However, it can

be noted that Keff is an integral measure: in a fully tur-

bulent flow, regions belonging to the same tracer con-

centration class can be detached from each other (i.e.,

the flow changes its topology), and the deformation of

a particular patch belonging to a certain tracer concen-

tration class would result in assigning the same value of

Keff to other patches that are not experiencing defor-

mation. To assign Keff 5 0 to regions not experiencing

deformation, Keff should be analyzed by dividing the

domains in smaller subdomains or—when the division

into subdomains is not possible because, for example, of

the dominance of advection—by paying extra care not

to assign values of Keff to regions that are not deformed

by the flow. Furthermore, the domain-integrated value

of Keff increases initially and then reaches a maximum.

The calculations presented in this study refer to the

period when Keff has reached a maximum and the tracer

field has not already divided into patches.

3. Numerical experiments

We perform a number of numerical simulations of

a deep, geostrophically balanced ML front that overlies

a pycnocline, which is initially at rest with flat isopycnals.

The model domain (of extent Lx 5 96 km, Ly 5 192 km,

and depth 5 500 m) is a periodic zonal channel with

solid boundaries in the meridional (y) direction and

a stratified interior overlying a flat bottom. The model

grid uses 1-km horizontal resolution and 32 grid cells in

the vertical that increase in size over depth. The domain

is initialized with lighter water in the southern half of the

ML and denser water to the north, with a vertical front

separating the two regions. The initial velocity field is

a geostrophically balanced frontal jet [u(y, z)] within the

ML with vertical shear (uz 5 2by/f ) in thermal wind

balance; the interior is initially quiescent with flat iso-

pycnals. The ML front evolves without any active wind

or buoyancy forcing, (e.g., representing the spindown

of an ML front created by the passage of a storm), which

leads to genesis of ML eddies that restratify the ML. A

three-dimensional, Boussinesq, free-surface, nonhy-

drostatic numerical model (Mahadevan et al. 1996a,b)

is used with the same configuration as in Mahadevan

et al. (2010). The model has constant horizontal mo-

mentum viscosity nh 5 5 m2 s21 and vertical viscosity

nz 5 1025 m2 s21. The pycnocline is flat, with nonuniform

stratification that has an initial maximum value of N2 5

1.8 3 1024 s22 at 240 m and decreasing to N2 5 1025 s22

at 500 m. Full details of the model are reported in the

appendix and in Table 1. A reference model integration

using an initial lateral buoyancy gradient by0 5 20.9 3

1027 s22 and ML depth H 5 200 m is the basis for the

discussion in the next section, unless otherwise stated.

Several numerical experiments with variations to these

parameters were also performed, as summarized in Table 2.

In the numerical integrations, the initial value of by ranges

between 0.2by0 and 5by0, and H ranges between 100 and

200 m. Correspondingly, Ri and Bu range between Ri 5

4 3 1022 and Bu 5 1023 for the integration with 0.2by0,

and Ri 5 25 and Bu 5 4 3 1023 for the integration with

5by0.

a. Initialization of tracer for studies of dispersion

To study the lateral dispersion of tracer in the pycno-

cline, east–west-oriented streaks of tracer are laid down

beneath the ML front along isopycnal surfaces s 5 25.44,

26.19, 26.54, and 26.76, which are at initial depths ranging

from 217 to 355 m (see appendix for details). The streaks

are initially 1 km wide (corresponding to 1 grid cell) and

96 km in length in order to extend across the entire do-

main, and of a concentration of 1 tracer unit. Details of

the initialization of the tracer streaks are reported in the

appendix and in Table 2. The dispersion of the tracer

(syy) is estimated along each of the isopycnal surfaces as

a function of time and provides an integrated measure of

tracer mixing by the submesoscale dynamics.

To test the sensitivity of the results to the initial tracer

distribution, we performed experiments where the tracer

streak width was given an initial Gaussian distribution over

10 km (10 grid cells) and a maximum concentration of 1

unit. Also, the sensitivity of our results to the numerical

parameters in the model was tested by reducing both hor-

izontal momentum viscosity and horizontal tracer diffu-

sivity to nh 5 1 m2 s21 and kH 5 1 m2 s21.

TABLE 1. Model parameters.

f Coriolis parameter 1024 s21

Lx Horizontal scale of the channel 96 3 103 m

Ly Meridional scale of the channel 192 3 103 m

Htot Total depth 500 m

H Initial ML depth (reference integration) 200 m

nh Horizontal eddy viscosity 5 m2 s21

nz Vertical eddy viscosity 1025 m2 s21

kH Horizontal diffusivity 5 m2 s21

kz Vertical diffusivity 5 m2 s21

Dr0 Initial density variation across front

(reference integration)

0.2 kg m23

by0 Maximal lateral buoyancy gradient at

front (reference integration)

20.9 3 1027 s22
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b. Tracer initialization for estimation of effective
diffusivity

To estimate an effective diffusivity (Keff) we initialize

a second tracer on the same isopycnals where the tracer

streaks were laid down with a continuous distribution

C(y) 5 1 2 y/Ly, where Ly is the meridional dimension of

the domain and 0 # y # Ly. Because Keff depends on

tracer concentration classes, this tracer, which varies

linearly in the zonal direction from 1 to 0, allows us to

visualize Keff in the entire domain. During the numerical

integration, the maximum concentration of tracer de-

creases exponentially, thus requiring a large number of

classes of tracer concentration in order to resolve Keff

even when the maximum concentration of tracer reaches

very small values. We use 50 classes of tracer concen-

tration, each having a range of 1/50. A similar analysis with

a larger number of tracer classes showed convergence,

suggesting that 50 tracer classes are adequate.

4. Results

a. Growth of submesoscale instabilities

The ML front, which is initially oriented east–west,

becomes unstable, forming meanders that are initially of

a small wavelength, but grow as the instability develops

and form eddies that act to restratify the ML, moving

lighter water over denser water with minimal vertical

mixing. Figures 1a–c show the evolution of the surface

density field in the numerical model.

The initial linear growth rate of the ageostrophic in-

stabilities in the model can be calculated in the linear

growth regime as st 5 log[EKE(t)]/2t, where EKE is the

eddy kinetic energy integrated over the ML. The result-

ing growth period for ML instabilities is st
21 ’ 0.4 days. In

comparison, (2) suggests a growth period for the ML

instabilities of st
21 ’ 0.5 days, estimated with N2 5

1026 s22, Ri 5 1, and Bu 5 0.0023, where Bu is calcu-

lated using L 5 32 km. Similarly, (3) gives a wavelength

for the linear growth of the most unstable perturbation

for the ML eddies of l 5 1.1 3 104 m.

The ML eddies that develop from the instability of the

front are seen to have a strong submesoscale character.

The vertical component of the relative vorticity z and the

lateral strain rate g (Figs. 1d–i) are elevated in filaments

where they attain values of O(f). Notably, the elevated

values of z and g occur at the same location in filaments,

undermining the physical basis for a separation of sub-

mesoscale flow into strain- and vorticity-dominated re-

gions by the Okubo–Weiss parameter (Okubo 1970;

Weiss 1991).

Vertical sections across the front, shown at various

times of the simulation in Fig. 2, reveal that ML eddies

slump the isopycnals (shown in black) at the front,

causing restratification within the ML as they release the

available potential energy associated with the lateral

buoyancy gradient at the front. The vertical component

of the relative vorticity z (shown in color) reveals that

ML eddies are often, but not always, surface intensified;

yet, they are able to penetrate into the pycnocline to

result in the significant perturbation of isopycnal sur-

faces and an energetic adiabatic flow field that leads to

vigorous lateral mixing of tracers. The evolution of the

tracer streaks on two of the isopycnal surfaces as a result

of such mixing is shown in cross section in Figs. 2d–f.

Figure 3 shows the effect of the ML eddies on rela-

tively shallow and deep isopycnal surfaces, s 5 25.44

(Figs. 3a–c) and 26.76 (Figs. 3d–f), 20 days after the

spindown of the front begins. Along s 5 25.44, the ML

eddies induce large deformations (630 m) in the ini-

tially flat isopycnal surface. Filaments with jzj’ 0.5f and

g ’ f are visible at the same location in regions with

strong gradients in the anomalous isopycnal depth.

Along s 5 26.76, the ML eddies deform the isopycnal

(610 m) and create filaments with jzj ’ 0.5f and g ’

0.5f. The positions of the dynamic filaments demarcated

by elevated z and g are not in the same location on the

two isopycnals, but are vertically deflected by the strati-

fication. The vertical deflection of the filaments by strat-

ification and the development of thin horizontal layers

of independent vortex dipoles (Fig. 3c) is possibly anal-

ogous to experimentally observed zigzag instabilities

(Billant and Chomaz 2000a,b), which can grow in the

presence of both a low horizontal Froude number and

a high Reynolds number, which are present in our model

simulation.

TABLE 2. Combinations of the initial cross-front buoyancy gra-

dient by, ML depth H, horizontal viscosity nh, horizontal diffusivity

kH, and initial tracer streak width W0 used in numerical experi-

ments. The reference integration is with H 5 200 m, by0 5 20.9 3

1027 s22, nh 5 5 m2 s21, kH 5 5 m2 s21, and W0 5 1 km (1 grid

cell) in meridional extent. Tracer was introduced on four isopycnal

surfaces s 5 25.44, 26.19, 26.54, and 26.76 in the pycnocline. For the

reference integration, the four isopycnal surfaces have an initial

depth of 216.59, 256.88, 302.72, and 354.87 m, respectively. The

10-km-wide tracer streak has a Gaussian profile in meridional sec-

tion with maximum value 1, whereas the 1-km-wide streak is simply

initialized with concentration 1 within the grid cell.

H by nh kH W0

200 m 0.2by0 0.5by0 0.75by0 by0 5by0 5 m2 s21 5 m2 s21 1 km

150 m — — — by0 — 5 m2 s21 5 m2 s21 1 km

100 m — — — by0 — 5 m2 s21 5 m2 s21 1 km

200 m — — — by0 — 1 m2 s21 1 m2 s21 1 km

200 m — — — — 5by0 1 m2 s21 1 m2 s21 1 km

200 m — — — by0 — 5 m2 s21 5 m2 s21 10 km

200 m — — — by0 — 1 m2 s21 1 m2 s21 10 km
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The e-folding depth of penetration for the ML eddies,

according to (5), is D ’ fL
s
/N ’ (102 m). The vertical

structure of the ML eddies is, however, variable in time,

with features progressively penetrating deeper into the

pycnocline (Fig. 3c) despite the nonuniform stratifica-

tion that acts to restrict the barotropization of the flow,

at least in the quasi-geostrophic approximation (Smith

and Vallis 2001). Theories to predict the correct vertical

structure of the flow, such as surface quasi-geostrophy

(SQG; e.g., Held et al. 1995; LaCasce and Mahadevan

2006) are based on N2 being constant; here N2 is not

uniform in the vertical and varies in time because of the

restratifying action of the ML eddies. Further work is

required to explain the time evolution of the vertical

structure of the instabilities.

b. Lateral dispersion of tracer

To study the along-isopycnal mixing of tracers in the

pycnocline, we introduced tracer streaks beneath the ML

front on isopycnal surfaces at varying depths as shown in

Fig. 2. The time evolution of the tracer concentration

along s 5 25.44 (Figs. 4a–c) shows that, under the action

of ML instabilities, the tracer streak begins to form wiggles

(as seen on day 10) that get stretched in the cross-front

FIG. 1. The time evolution of ML instabilities is shown in terms of (a–c) surface density (sigma), (d–f) vertical component of the relative

vorticity (z), and (g–i) horizontal strain rate g, all plotted for the surface on days (top) 10, (middle) 15, and (bottom) 20 of the simulation. Here

z and g are normalized by f. The domain is 96 km (in x) 3 192 km (in y); only the frontal region between y 5 50 and 150 km is shown.
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direction. On day 15, the regions of high tracer con-

centration are linked to each other in a filament that is

folding on itself (Fig. 4b). On day 20, we find that the

previously continuous filament is broken into discrete

blobs of tracer that evolve independently of each other

(Fig. 4c). The time evolution of the maximum tracer

concentration (Fig. 4a, insert) shows that for the first 3–5

days, the maximum tracer concentration does not change.

Between days 5 and 15, the maximum tracer concentra-

tion decays rapidly and exponentially, following which,

the decay rate slows considerably. At greater depths,

along s 5 26.76, the tracer undergoes a similar evolution

(Figs. 4d–f), but with a delayed response to the instabilities.

At depth, the maximum tracer concentration decays at

a slower rate and asymptotes toward a larger value than

was reached on s 5 25.44.

Vertical sections of the tracer streaks taken along x 5

20 km show that the tracer is mainly spreading along

isopycnals (Figs. 2d–f). By day 20, the streak has spread

from the initial position approximately 10 km in the

horizontal direction and 100 m in the vertical direction.

The ratio of the distribution of the tracer in the vertical

to the horizontal direction gives a typical value of the

tracer filament slope: (DC/Dz)/(DC/Dy) 5 102. Taking

a typical value of the buoyancy frequency in the interior

of N2 5 1024 s22, it is possible to see that [(DC/Dz)/(DC/

Dy)]2 ; N2/f 2 5 104, which is in agreement with the

results of Haynes and Anglade (1997) and Smith and

Ferrari (2009) for tracer filaments in the interior subject

to both horizontal strain and vertical shear. Though we

do not explore the role of vertical mixing in this study,

Haynes and Anglade (1997) and Smith and Ferrari

(2009) have shown that on account of the strong vertical

shear that tilts filaments, even a small vertical diffusivity

is sufficient to arrest the lateral downscale cascade of

tracer variance.

The analysis of the tracer displacement from the center

of mass shows that along s 5 25.44, the distribution is

initially Gaussian. At later times, the tracer displacement

shows significant deviation from the normal distribution

(Figs. 5a–c). Analysis of the tracer displacement at the

same time, but at greater depth [e.g., along s 5 26.76 (Fig.

5d)] and for the integrations with a decreased value of the

cross-front density contrast 0.2by0 (Fig. 5e) and initial ML

depth H 5 100 m (Fig. 5f), also show deviations from the

Gaussian distribution, even if much less pronounced.

FIG. 2. (a–c) Vertical (y–z) sections of density (continuous bold lines) and relative vorticity z normalized by

f (colors) along x 5 20 km, and (d–f) vertical sections of density (continuous bold lines) and tracer concentration.

Results are shown up to a depth of 400 m on days (top) 10, (middle) 15, and (bottom) 20 of the simulation.
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FIG. 3. Dynamical properties on day 20 of the simulation shown on a shallow and deep isopycnal surface in the

pycnocline. (a) Depth anomaly (m), (b) relative vorticity z normalized by f, (c) lateral strain rate g normalized by f along

the isopycnal s 5 25.44; (d) depth anomaly (m), (e) z/f, and (f) g/f along the isopycnal s 5 26.76. Black line at x 5 20 km

indicates the location of the vertical section in Fig. 2.
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To analyze the dispersion of tracer by the eddying

flow in the pycnocline, we estimate the tracer variance

syy, defined in (8), as a function of time. We find, as will

be shown in the following analysis, that only at early

times does the tracer behave diffusively. Thereafter, it

gets caught in dynamic filaments with high strain rates,

and gets rapidly stretched in the cross-front direction

leading to an exponential growth in the variance. Con-

sequently, a stage is reached when the tracer filaments

break up, and the variance shows a power law behavior

FIG. 4. Evolution of tracer concentration along (left) s 5 25.44 and (right) 26.76 for days (a),(d) 10, (b),(e) 15, and (c),(f)

20. Embedded in (a) and (d): time evolution of the maximum tracer concentration along (a) s 5 25.44 and (b) 26.76.
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with time. A Fickian description for the tracer’s be-

havior is thus valid only at early times.

A log–log plot of the time evolution of the tracer

variance syy (Fig. 6a) clearly shows the existence of

three different dynamical regimes, as described below.

1) DIFFUSIVE REGIME

During the first 3–4 days, corresponding to about 6

inertial periods, the instabilities grow linearly and tracer

dispersion increases linearly in time. In this period, the

tracer variance evolves as syy ; t1.1 (Fig. 6a). Around

day 4, the evolution of tracer variance undergoes a sud-

den transition into the second regime.

2) EXPONENTIAL REGIME

From days 4 to 15, corresponding to 14 inertial periods,

the tracer exhibits superdiffusive behavior, and the con-

centration variance grows as syy ; t6.8 (Fig. 6a). In this

period, tracer filaments are seen to show large excursions

in y (Fig. 4b) and the growth of tracer filaments occurs at

an exponential rate proportional to their strain rate (g). To

explain the rapid rate of increase in tracer variance by

exponential growth of tracer filaments, we plot the time

evolution of the tracer variance in semilogarithmic space

(Fig. 6b). The exponential growth rate in this second,

transient, regime suggests the presence of two-dimensional

turbulence in the enstrophy cascade range (Lin 1972). Such

exponential growth has been observed in the oceanic ML

using tracers (J. Price 1981, unpublished manuscript) and

surface drifters (Koszalka et al. 2009), and, subsurface of

the Gulf Stream, using floats (LaCasce and Bower 2000).

Following Garrett (1983), (16) can be modified to in-

clude the effect of strain acting on the tracer streak as

follows:

syy 5 p
Ky

hgi exp C3hgi t 2
1

4hgi

� �� 	
. (23)

Here, hgi is the ensemble strain rate acting on the tracer

streak and C3 is a constant of O(1). While g can be dif-

ficult to control because of the intermittency of the strain

rate associated with filaments in both space and time, it is

possible to create different numerical realizations that

change hgi through the deployment of tracers at different

depths inside the pycnocline, or through a change of the

initial parameters of the ML front as shown in Fig. 6c. We

compare results from the upper and lower pycnocline for

the reference integration (full and dashed lines in Figs.

6c,d), and in the upper pycnocline for a numerical in-

tegration with initial ML depth of 100 m. Figure 6d

shows that the exponential growth rate (slope in semi-

logarithmic space) of the tracer variance for each of these

cases varies with hgi in accordance with (23). The deeper

ML generates stronger filaments and larger hgi (Fig. 6c)

as expected based on the scaling for submesoscale flows

in (4). Consequently, this case results in a higher growth

rate of tracer variance (Fig. 6d). Similarly, because the

EKE and strain rate decays with depth, the upper pyc-

nocline has larger values of hgi and shows higher growth

rates.

3) RICHARDSON REGIME

From days 16 to 42 the tracer concentration variance

along the isopycnal evolves as syy ; t2.5 (Fig. 6a). In this

period, the flow has attained finite amplitude in-

stabilities. The tracer streak is broken into tracer blobs

that evolve independently (Fig. 4c).

The time evolution of the tracer variance suggests the

presence of two-dimensional turbulence in the inverse

energy cascade range with 23 slope in the KE spectrum.

The power law dependence of tracer variance in the

third regime is in agreement with upper-ML observa-

tions by (Okubo 1971), which reported syy ; t2.3. The

transition time between the second and the third regime

is in agreement with the observations of surface floats by

Koszalka et al. (2009).

Analysis of the time evolution of the KE spectra

(Fig. 7a) shows the initial excitation of the kinetic energy

on the ’10 km scale and the subsequent nonlinear

cascade to larger scale. Analysis of the KE spectrum at

day 41 (Fig. 7b) shows the presence of k25/3 slope at syn-

optic scales and k23 slope at smaller scales, confirming

the presence of an inverse energy cascade range and an

enstrophy cascade range. At even smaller scales, the spectra

become steeper because of the action of viscosity. The

slope of the spectra is the same along different isopycnals

at different depths.

To test the sensitivity of the results to the initial tracer

distribution, we performed experiments where the tracer

streak width was given an initial Gaussian distribution

over 10 km (10 grid cells) and a maximum concentration

of 1 unit. Results do not differ from those obtained with

the 1-km-wide streak; we see the presence of the three

regimes and the first regime shows the same time de-

pendence in syy. Also, the sensitivity of our results to the

numerical parameters in the model was tested by re-

ducing both horizontal momentum viscosity and hori-

zontal tracer diffusivity to nh 5 1 m2 s21 and kH 5

1 m2 s21. Again, for the first regime, the slope of the

tracer variance is the same as the value found for the

larger values of horizontal diffusivity and viscosity, im-

plying that our results do not depend on the specific

choice of these model parameters.

It is of interest to estimate a lateral diffusivity for the

tracer as a measure of mixing, but, since the tracer var-

iance shows non-Fickian behavior in this regime, it
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FIG. 5. Normalized histograms of quantity of tracer in function of the meridional displacement (m) of the tracer

from its center of mass, (y 2 y0) 2
ffiffiffiffiffiffiffiffiffiffi
syy

q
, where y0 is the meridional position of the center of the domain. (left) Results

from the reference integration along s 5 25.44 for days (a) 10, (b) 15, and (c) 40, representing the first, second, and

third regime, respectively. (right) We show (d) the reference integration at day 40, along s 5 26.76; (e) the integration

with by0 diminished to 0.2by0 at day 60; and (f) the integration with initial ML depth decreased to H 5 100 m at day 60.

Dashed lines represent the Gaussian distribution with standard deviation calculated from the tracer variance. Non-

Fickian dispersion in the second and third regime leads to a deviation from the Gaussian distribution that is expected

of a diffusive process. The non-Fickian behavior sets in at later times on deeper isopycnals and when the sub-

mesoscale ML eddies are weaker (i.e., for smaller H and by).
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would not be appropriate to assume a constant lateral

diffusivity for the tracer according to (15). Instead, we

examine the time-dependent, apparent diffusivity (Ka),

expressed in accordance with Richardson (1926) and

Okubo (1971) as

Ka(t) 5
syy

4t
. (24)

For Fickian diffusion, Ka would be constant and equiv-

alent to Ky in (15) (Einstein 1905; Taylor 1921). Using a

wide range of observations, Okubo (1971) showed that

Ka varies with the diffusive length scale (L) defined (for

dispersion in the y direction) as

L 5 3
ffiffiffiffiffiffiffi
syy

p
. (25)

This definition of L is based on the fact that if the tracer has

a Gaussian distribution in the meridional direction, most of

the tracer will be contained within 3
ffiffiffiffiffiffiffiffiffi
s

yy

q
. The time evo-

lution of Ka and L (Fig. 8a) shows that both quantities co-

vary in time, and both exhibit the three dynamical regimes

noted for syy. However, initially, the dispersive length scale

3
ffiffiffiffiffiffiffiffiffi
s

yy

q
is smaller than what can be resolved by the model,

and L and Ka are meaningful only at later times (i.e., in

the third regime). Plotting Ka versus L for the third regime

(Fig. 8b) reveals that the modeled tracer shows the behavior

Ka ; L1:24. (26)

This 1.24 power dependence inferred for the model

simulations is higher than the value of 1.1 obtained from

observations by Okubo (1971), but lower than the

FIG. 6. Time evolution of the tracer concentration variance syy along s 5 25.44 plotted on (a) logarithmic and (b)

semilogarithmic scales. (c) Time evolution of the area-averaged strain rate (normalized by f ) hg/f i on different

isopycnals (shallow and deep) and with ML H 5 100 m (for the shallow isopycnal). The evolution of the strain rate

also exhibits a transition from one regime to another, but remains consistently higher for the shallower isopycnal and

the simulation with deeper mixed layer. (d) Time evolution of the tracer concentration variance along s 5 25.44

(bold line) and along s 5 26.76 (dashed line) for the reference integration, and along s 5 25.44 for the numerical

integration with initial ML depth of 100 m (dotted-dashed line). In (a), we find three distinct regimes characterized

by s2
y ; t1:1, t6:8, and t2:5. In (b) and (d) we find that the second regime is near exponential. Thin straight lines rep-

resent linear fits to estimate the exponential growth rate in the second dynamical regime.
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4/3 Richardson power law in (19) that is proposed to hold

in the ocean (Stommel 1949; Ollitrault et al. 2005;

Lumpkin and Elipot 2010).

We make a further effort to estimate a time-dependent

horizontal diffusivity Ky as a measure of lateral mixing by

using each of the three proposed relationships (15), (17),

and (19) within each of the three regimes. To do this, we

must first estimate the transition times between the diffu-

sive and exponential regimes and between the exponential

and Richardson regime. In particular, the transition time

between the diffusive and exponential regimes can be

calculated from (15) to (17) as

t1,2 5
1

4

1

C1h1/3
, (27)

FIG. 7. (a) Time evolution of the kinetic energy spectra along s 5

26.76 for the reference integration. (b) Kinetic energy spectra at

day 41 for the reference integration along s 5 25.44 (full bold line),

26.19 (full thin line), 26.54 (dashed line), and 26.76 (dotted-dashed

line).

FIG. 8. (a) Evolution in time of the apparent diffusivity Ka

(m2 s21) (full line) and diffusive length L (m) (dashed line). (b)

Plot of the apparent diffusivity vs the diffusive length for the third

regime. (c) Evolution in time of the lateral diffusivity Ky (m2 s21)

along s 5 25.44 (full line) and 26.76 (dashed line) for the reference

integration, along s 5 25.44 for the integration with initial by set as

0.2by0 (dotted-dashed line), and along s 5 25.44 for the integration

with initial ML depth H 5 100 m (dotted line).
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where the constant C1 can be found from linear regression

from the reference integration. The transition time be-

tween the exponential and Richardson regime (t2,3) has no

simple analytical form and is thus estimated from the

transition in the rate of increase in variance.

We then calculate Ky in each of the three regimes using

(15), (17), and (19), respectively, having estimated h and

�—the enstrophy and energy dissipation rates. The re-

sulting Ky is shown in Fig. 8c for different model simu-

lations. For the reference integration (full line), during

the first regime Ky has the value of 1022 m2 s21. During

the second regime Ky increases to approximately

2300 m2 s21. Finally, during the third regime, the growth

rate of Ky decreases. By the end of the integration, Ky

reaches the value of approximately 2500 m2 s21. We see

a strong dependence of Ky on the depth of the isopycnal

along which the tracer is released (dashed line), the lat-

eral buoyancy gradient in the ML by (dotted-dashed line),

and on the initial ML depth, H (dotted line). The exact

scaling dependence is, however, not clear. In general,

results can be influenced by the relationship between

the depth of the isopycnal on which Ky is calculated and

the value of N2 in the pycnocline. In fact, changes of the

initial ML depth H also result in changes in N2, and these

can affect the penetration depth of the ML eddies and

then can affect the lateral mixing.

Analysis of the tracer variance at different depths and

for different initial values H and by (given in Table 2)

show that the various simulations differ in the rate of

growth of tracer variance. But, the presence of the three

turbulent regimes described in section 4b, and the 1.24

power law between apparent diffusivity (Ka) and the

diffusion scale (L) are robust for all the cases.

Since these numerical experiments were started from an

idealized initialization of a front, one may ask how these

analyses might apply when tracer is introduced in a flow

field that has already spun up, as when dye is injected in

the ocean. To address this question, we injected the tracer

streaks at 10 and 20 days after model initialization. Our

results, shown in Fig. 9, reveal that the tracer variance

grows very abruptly when the tracer is introduced, so that

within a short period it catches up to the level that it would

have attained had the tracer been introduced at the be-

ginning of the model integration.

c. Comparison with other mechanisms for horizontal
mixing

The values found for Ky can be compared with the

values found from other mechanisms for horizontal

mixing acting in the oceanic pycnocline. Holmes-Cerfon

et al. (2011) calculated the horizontal particle dispersion

due to random waves in a three-dimensional rotating

and stratified Boussinesq system, which acts as an

idealized model for tracer dispersion in the ocean by the

internal wave field. Using the parameters utilized in our

study, the single-particle diffusivity [Holmes-Cerfon et al.

2011, their Eq. (8.6)] leads to a horizontal diffusivity

for the Garrett–Munk (e.g., Munk 1981) internal wave

spectra of Ky ’ 0.12 m2 s21, which is an order of

magnitude larger than the diffusivity induced by ML

eddies in the pycnocline during the first regime. The

diffusivity found by Holmes-Cerfon et al. (2011) is,

however, limited by the fact that it is based on one-

particle dispersion. Multiple-particle dispersion is ex-

pected to give larger values for the interior horizontal

diffusivity induced by internal waves. Our values for Ky

are also compared with the horizontal diffusivity due to

internal wave shear dispersion. Using the relationship

found by Young et al. (1982) for internal wave shear

dispersion with parameter values used in this study, we

estimate Ky ’ 0.04 m2 s21, which is a factor of three

lower than the single-particle dispersion estimate

Holmes-Cerfon et al. (2011), but comparable or larger

than our estimate for interior diffusivity by ML eddies

during the first regime. Finally, our values for Ky can

also be compared with the horizontal diffusivity due to

vortical modes generated from the adjustment of mixed

patches following diapycnal mixing events. Using the

relationship for Ky in Sundermeyer and Lelong (2005),

their Eq. (9), along with parameter values used in our

study gives Ky ’ 2 m2 s21, which is larger than internal

wave-driven mixing and the value of interior diffusivity

generated by ML eddies in the first regime within this

study. At early times in the development of ML eddies

(i.e., within the first regime), it would be difficult to

distinguish the effect of ML eddies on mixing in the

FIG. 9. Evolution in time of the tracer variance syy (m2) along

s 5 25.44 for tracer deployed in a streak at the beginning of the

numerical integration (full line) at days 10 (dashed line) and 20

(dotted-dashed line).
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pycnocline from other mechanisms. But, when devel-

oped (i.e., in regimes 2 or 3), ML eddies provide a dis-

tinct enhancement in mixing, far beyond what can be

achieved by other mechanisms like internal waves and

vortical modes.

d. Effective diffusivity of filaments

To better understand the role of singular submesoscale

filaments in lateral mixing, we use a tracer that was ini-

tialized on an isopycnal surface with a uniform gradient in

y. To isolate the effect of submesoscale filaments, we use

the simulation with a fivefold stronger lateral buoyancy

gradient (by 5 5by0), which produces pronounced fila-

ments. Figure 10a shows the tracer concentration on day

18 of the integration. We focus, hereafter, on a sub-

domain (Fig. 10b) containing a distinct filament that ex-

hibits high relative vorticity (z; Fig. 10c), strain rate (g;

Fig. 10d), and potential vorticity (Fig. 10e). Both z and g

exceed f, highlighting the submesoscale character

(Mahadevan and Tandon 2006) of the filament.

The quantity Keff is estimated using (21) and (22) and

shown in Fig. 11a. Surprisingly, the filament, which is in-

strumental in rapidly enhancing the dispersion of tracer,

is delineated by a region of zero Keff at the filament center,

with Keff ’ 600 m2 s21 on the edges. Its effect on tracer

fluxes becomes apparent when we examine the lateral

tracer flux K
eff
� $C in Fig. 11b. Enhanced fluxes are found

along the filament boundary. To test the dependence of

the barrier behavior of filaments on numerical param-

eters, the model was integrated with nh 5 1 m2 s21 and

kH 5 1 m2 s21. Results (not shown) show the presence of

filaments with zero Keff at the filament center and with

enhanced fluxes are found along the filament boundary,

thus suggesting the independence of the result to model

parameters.

The region of zero effective diffusivity in the core of

the filament suggests that the filament is a barrier to

mixing in its interior and must therefore carry tracer

without mixing it in its core, but eventually exchange it

with the surrounding region across its edges. This

behavior is different from that of mixing barriers as-

sociated with open-ocean jets, where mixing is sup-

pressed by the mean flow (Marshall et al. 2006; Smith

and Marshall 2009; Abernathey et al. 2010; Ferrari

and Nikurashin 2010). In submesoscale filaments, the

mechanism generating zero Keff in the filament is hori-

zontal shear, which acts to move the tracer contours

parallel one to each other without deforming them. The

hypothesis that the center of the filament is dominated

by shear flow is supported by the observation that it

contains both high-vorticity and high-strain rate at the

same location. Figure 10f shows the horizontal shear,

calculated as

a 5
j[ẑ 3 u] � $uj

juj , (28)

to be enhanced in the core of the filament. However,

shear flows also exhibit diffusion in the form of Taylor

dispersion (Taylor 1953), which acts along the tracer

concentration contours rather than across them.

For an idealized 2D tracer filament balanced by the

action of horizontal strain g in the x direction and hor-

izontal diffusivity kH, the advection–diffusion equation

can be written as

›C

›t
1 gx

›C

›x
2 gy

›C

›y
5 kH

›2C

›x2
1

›2C

›y2

� �
. (29)

Assuming a balance between the along-filament strain

and the across-filament diffusivity, (29) predicts a typical

filament width (Garrett 1983)

W ;

ffiffiffiffiffiffiffi
kH

g

r
. (30)

For kH 5 5 m2 s21 and g 5 O(f), (30) yields W ’ 200 m.

However, the strong horizontal shear implies that Taylor

dispersion can also contribute to filament lengthening.

Assuming uH 5 gx 1 U0[(1 2 y2/W2)]x̂, where y is now

the cross-filament coordinate with respect to the filament

center about which the flow is assumed axisymmetric and

U0 is a typical along-filament velocity, after a Reynolds

decomposition, (29) yields (Taylor 1953)

›C

›t
1 gx

›C

›x
2 gy

›C

›y
5 kH 1 1 mW2(gx)2

k2
H

" #
›2C

›x2

1 kH

›2C

›y2
, (31)

where m is a nondimensional constant of order 1. The

Taylor dispersion term enhances the effect of the hor-

izontal strain in elongating the filament. Assuming

W2[(g
Lf )2/k2

H]W2 � 1, where Lf is the typical length of

the filament, for kH 5 5 m2 s21 and g 5 O( f) the Taylor

dispersion and the horizontal diffusivity terms are both

of O(1024 C). The balance between Taylor dispersion

and the horizontal diffusivity gives W2g2/kH ; kH/W2,

which results in the same balance as (30). Along-filament

Taylor dispersion resulting from the large lateral shear in

filaments can thus have a similar contribution as the lat-

eral strain rate in elongating tracer filaments. Its neglect

could thus lead to an overestimation in the width of the

tracer filaments.

The order of magnitude of Keff is in agreement with the

relationship between the Nusselt number Nu 5 Keff/kH
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and the Peclet number Pe 5 UL/kH of the flow

(Shuckburgh and Haynes 2003; Marshall et al. 2006). For

a filament (Fig. 10a) with typical velocity of O(1 m s21)

and typical cross-filament size of O(10 km), Pe 5

O(102), which corresponds to Nu 5 Keff/kH 5 O(102).

The value of Pe found through the simple scaling

suggests that the flow is in a regime in which Keff is

independent of kH (Shuckburgh and Haynes 2003;

Marshall et al. 2006).

5. Discussion

Previous work has examined submesoscale instabilities

within the mixed layer and their role in the vertical

FIG. 10. (a) Tracer concentration for the entire domain along s 5 25.44 at day 18 for the 5by0 integration. The

following focus on a subregion: (b) tracer concentration, (c) relative vorticity (z) normalized by f, (d) lateral strain

rate (g) normalized by f, (e) potential vorticity (1029 m21 s21), and (f) horizontal shear normalized by f for a sub-

mesoscale filament forming in the pycnocline.
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exchange of properties between the surface and pycno-

cline. Lateral mixing in the pycnocline had been hypoth-

esized to result from interior processes like vortical modes

(Kunze 2001), resulting from internal wave induced mix-

ing. Here, we show that surface-intensified processes in

the mixed layer also generate significant lateral mixing

in the interior. Current ML eddy parameterizations

(Fox-Kemper et al. 2008) are designed to represent the

effect of ML eddies within the surface ML. Our findings

suggest that such parameterizations may also need to

account for the effect of ML eddies in the pycnocline.

Observational studies of mixing in the pycnocline have

used dye dispersion (Ledwell et al. 1998; Sundermeyer

and Ledwell 2001) to quantify lateral mixing in terms of

a horizontal Fickian diffusivity. But in our numerical

experiments, the action of ML eddies results in a non-

constant lateral diffusivity in the pycnocline that cannot

be represented by Fickian diffusion, except at early times.

Filaments that are generated by the mesoscale strain

field have been known to have an effect on tracers. In a 2D

mesoscale flow field, the cross-filament diffusion of tracer

has been conjectured to arrest the elongation of the fila-

ment due to strain (Garrett 1983). In 3D, vertical diffusion

comes into play on account of the strong vertical shear,

and arrests filamentation (Haynes 2001; Smith and Ferrari

2009). Here, we examine submesoscale filaments, in which

both the horizontal shear and strain rate are of the same

order. For such filaments, Taylor dispersion arising from

horizontal shear could enhance the growth of the filament.

Our scaling analysis suggests that it may be important to

consider the horizontal shear, in addition to the lateral

strain rate, in estimating the cross-filament diffusivity.

Finally, the processes described here are likely to play

a role in the distribution and fluxes of biogeochemical

properties in the upper ocean. Even though the bio-

geochemical sources and sinks for nitrate are patchy, the

correlation between density and nutrient is generally

very robust in the pycnocline (e.g., Kamykowski and

Zentara 1986). The dynamics described here may be of

importance in homogenizing properties, such as nutri-

ents, along isopycnals.

6. Conclusions

A series of numerical simulations were conducted to

isolate the effect of ML eddies on the lateral mixing of

tracers in the ocean interior. Our results show the im-

portance of ML processes in influencing the dynamics

and the mixing in the pycnocline. The strength of along-

isopycnal lateral mixing is highly variable and de-

pendent on parameters like the ML depth and lateral

buoyancy gradient in the ML, as well as the isopycnal

depth and vertical buoyancy gradient within the pyc-

nocline. The evolution of tracer streaks injected in the

pycnocline shows the presence of three distinct turbu-

lent regimes characterized by differences in the growth

of the dispersion. Initially, there is a diffusive regime

where dispersion increases linearly in time. This is fol-

lowed by a period in which the tracer experiences an

exponential growth in the dispersion because of the in-

tegrated action of strain. Finally, the fully developed

flow exhibits a Richardson-like power law in the growth

of dispersion. The tracer variance is found to exhibit

these three regimes for a wide range of model parame-

ters (H and by) and isopycnal surfaces on which dye is

released. The time-varying lateral diffusivity (Ky) con-

sequently reflects the three dynamical regimes and a

dependence on the submesoscale parameters, depth of

FIG. 11. (a) Effective diffusivity (m2 s21) and (b) lateral tracer

flux along isotracer lines (m s21) for a submesoscale filament

forming in the pycnocline along s 5 25.44 at day 18 for the 5by0

integration.
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isopycnal, and background stratification in the pycno-

cline. Submesoscale filaments that are characterized by

the coincidence of large horizontal strain rate and vertical

vorticity act to rapidly flux the tracer and increase tracer

dispersion. However, the Nakamura effective diffusivity

is small in the core of the filaments. The horizontal shear

in the filaments overwhelms cross-frontal diffusion and

filament centers act as barriers to transport, while eddy

fluxes are enhanced only at the filament edges where

tracer gradients are largest.
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APPENDIX

Model Description

The model is an extension of the three-dimensional,

nonhydrostatic, free-surface model described in

Mahadevan et al. (1996a,b, 2010). Model parameters are

summarized in Table 1. The model is set up in a zonally

periodic channel with impermeable vertical walls at the

meridional boundaries and at the bottom. The hori-

zontal dimensions are Ly 5 192 km in the meridional

direction, Lx 5 96 km in the zonal direction, and Htot 5

500-m depth. The horizontal resolution is 1 km. In the

vertical the model has 32 layers, but the vertical reso-

lution is variable with depth, with enhanced resolution

of 2 m near the sea surface, decreasing to the resolution

of 36 m at depth. Lateral free-slip boundary conditions

are applied. The model is nonhydrostatic, even though

the instabilities described are hydrostatic (Mahadevan

2006). The domain is initialized with a sharp lateral

north–south density gradient in the upper layers, with

isopycnals initially vertical. The southern half of the

domain has lighter water, and is initialized using an an-

alytic profile of the form Dr 5 Dr tanh[0.03p(y 2 Ly/2)],

which describes a surface ML front centered at 80 km

north of the southern boundary. In the reference in-

tegration, the front has an initial cross-front density

contrast of Dr0 5 0.2 kg m23 and an initial cross-front

buoyancy gradient of by0 5 20.9 3 1027 s22. The initial

depth of the ML is H 5 200 m and the initial ML

buoyancy frequency is N2 5 1026 s22. The ML front is in

thermal wind balance, with the level of no motion set at

the top of pycnocline where the isopycnals are initially

flat, so that initially no mean flow penetrates into the

stratified region underlying the ML. The underlying

pycnocline has been initialized from a typical density

profile from the North Atlantic taken from the World

Ocean Atlas (Levitus 1982). Initially, the pycnocline is

flat, with nonuniform stratification with an initial maxi-

mum value of N2 5 1.8 3 1024 s22 at 240 m and de-

creasing to N2 5 1025 s22 at 500 m, which is in general

agreement with open-ocean values (e.g., Lewis et al.

1986; Planas et al. 1999). For comparison, some of the

numerical simulations of the upwelling fronts generated

in the California Current system by Capet et al. (2008b),

their Figs. 5 and 10, have a slightly larger value of by ’

21.3 3 1027 s22 and smaller initial ML depth H ’ 50 m.

The model is initialized with different values of lateral

buoyancy gradient 0.2by0, 0.5by0, 0.75by0, and 5by0. The

numerical integration with reference cross-front buoy-

ancy gradient of by0 is also integrated with an initial ML

depth H 5 100 and 150 m. Changes in ML depth result in

changes to N2 at the base of the ML, as the ML base

matches the pycnocline at different depths corresponding

to different buoyancy frequencies. All the numerical ex-

periments performed are summarized in Table 2. The

model has fixed values for the diffusivity and the viscosity.

In the horizontal, nh 5 5 m2 s21. In the vertical, nz 5

1025 m2 s21. To study the time evolution of the tracer

concentration variance along the pycnocline, east–west-

oriented streaks of tracer are initialized along different

isopycnals, namely at s 5 25.44, 26.19, 26.54, and 26.76

across the zonal extent of the domain. The streaks, of

1-km width and initial tracer concentration 1 unit, are

placed at y 5 80 km from the southern boundary (i.e.,

below the surface ML front). To estimate effective dif-

fusivity, a tracer with concentration varying linearly from

1 at the southern boundary to 0 at the northern boundary

and spread along the entire domain is initialized along the

s 5 25.44, 26.19, 26.54, and 26.76 isopycnals. For the

reference integration, the four isopycnal surfaces have

initial depths of 216.59, 256.88, 302.72, and 354.87 m, re-

spectively. At the northern and southern boundary, the

tracer is subject to the boundary condition ›C/›y 5 0.
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