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Frontal dynamics boost primary production in the summer
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Abstract Bio-physical glider measurements from a unique process-oriented exper-
iment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution
of the deep chlorophyll maximum (DCM) across an intense density front, with a
resolution (∼ 400m) suitable for investigating sub-mesoscale dynamics. This front,
at the interface between Atlantic and Mediterranean waters, had a sharp density
gradient (∆ρ ∼ 1 kg/m3 in ∼ 10 km) and showed imprints of (sub-)mesoscale phe-
nomena on tracer distributions. Specifically, the chlorophyll-a concentration within
the DCM showed a disrupted pattern along isopycnal surfaces, with patches bear-
ing a relationship to the stratification (buoyancy frequency) at depths between 30
and 60 m.
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In order to estimate the primary production (PP) rate within the chlorophyll
patches observed at the subsurface, we applied the Morel and Andrè (1991) bio-
optical model using the Photosynthetic Active Radiation (PAR) from Argo pro-
files collected simultaneously with glider data. The highest production was located
concurrently with domed isopycnals on the fresh side of the front, suggestive that
(sub-)mesoscale upwelling is carrying phytoplankton patches from less to more
illuminated levels, with a contemporaneous delivering of nutrients. Integrated es-
timations of PP (1.3 g C m−2d−1) along the glider path are two to four times
larger than the estimations obtained from satellite based algorithms, i.e. derived
from the 8-days composite fields extracted over the glider trip path. Despite the
differences in spatial and temporal sampling between instruments, the differences
in PP estimations are mainly due to the inability of the satellite to measure DCM
patches responsible for the high production. The deepest (depth > 60 m) chloro-
phyll patches are almost unproductive and probably transported passively (sub-
ducted) from upper productive layers.

Finally, the relationship between primary production and oxygen is also inves-
tigated. The logarithm of the primary production in the DCM interior (Chl > 0.5
mg/m3) shows a linear negative relationship with the Apparent Oxygen Utiliza-
tion, confirming that high chlorophyll patches are productive. The slope of this
relationship is different for Atlantic, mixed interface waters and Mediterranean
waters, suggesting the presence of differences in planktonic communities (whether
physiological, population or community level should be object of further investiga-
tion) on the different sides of the front. In addition, the ratio of optical backscatter
to Chl is high within the intermediate (mixed) waters, which is suggestive of large
phytoplankton cells, and lower within the core of the Atlantic and Mediterranean
waters. These observations highlight the relevance of fronts in triggering primary
production at DCM level and shaping the characteristic patchiness of the pelagic
domain. This gains further relevance considering the inadequacy of optical satellite
sensors to observe DCM concentrations at such fine scales.

Keywords Primary production · Glider · Mediterranean Sea · Fronts · subme-
soscale · AOU

1 Introduction1

Primary production in seas and oceans is crucial for both ecosystem functioning,2

since it regulates the available energy for higher-trophic-levels, and global warm-3

ing, as it affects carbon export and sequestration. An interesting scientific debate is4

on the table about the mechanisms behind bloom initiation in temperate regions,5

classically explained by the seminal Critical Depth theory by Sverdrup (1953).6

Some recent studies proposed alternative (Behrenfeld, 2010, Dilution Recoupling7

hypothesis) or complementary (Huisman et al, 1999; Chiswell, 2011; Taylor and8

Ferrari, 2011a, Critical Turbulence) explanations of the bloom onset and the mod-9

ulation of the primary production during the spring bloom.10

Other recent studies focused on the role of mesoscale and submesoscale dynamics in11

the crucial phase of bloom or early-bloom triggering (Mahadevan et al, 2012; Tay-12

lor and Ferrari, 2011b), emphasizing the relevance of dynamical processes at vari-13

ous scales in creating the conditions for producers to exceed consumption/export.14



Fronts boost primary production in the stratified Mediterranean 3

A short and focused synthesis of this debate was recently provided by Franks15

(2014) while Chiswell et al (2015) attempted to shed light on these apparently16

mutually exclusive theories through a simple theoretical model reproducing the17

annual cycle of phytoplankton and checking how the model behavior could be ex-18

plained by such different theoretical frames.19

While the above-mentioned debate remains open, even less is known about the20

mechanisms driving and controlling primary production, and its related biomass,21

during the post-bloom period, i.e. during summer stratification and before the22

onset of winter mixing and disruption of such stratification.23

In temperate areas, once the seasonal thermal stratification has set in, the newly24

formed upper mixed layer (UML) becomes naturally nutrient depleted. The phyto-25

plankton community continues to live and reproduce in sub-surface layers, tightly26

associated with the nitracline. It is commonly assumed that this layer is within27

the pycnocline, below the UML, forming the so called deep chlorophyll maximum28

(DCM, hereafter) otherwise called sub-surface maximum. This is an ubiquitous29

feature of temperate regions of the world oceans. Processes and mechanisms un-30

derlying the vertical position of the DCM in the different parts of the world oceans31

and seas have been explored (Hodges and Rudnick, 2004), but still unclear. Re-32

cently Navarro and Ruiz (2013) observed a tight relationship between the potential33

density of the waters in which the spring bloom appears and the DCM pycnal lo-34

cation, suggesting that the DCM localization would be better described in the35

vertical using isopycnal coordinates than fixed depth levels. Primary production36

associated with the DCM has been less explored than its winter-spring counter-37

part, when surface blooms have been broadly assessed both in biomass and pro-38

duction through satellite based studies (e.g. Antoine et al, 1996; Behrenfeld and39

Falkowski, 1997). Satellite optical sensors are able to provide data up to ∼ 1/5 of40

the euphotic depth (Siswanto et al, 2005). This implies that algorithms for esti-41

mation of integrated (throughout the euphotic depth) primary production usually42

rely on a uniform vertical distribution of the Chl (here used as proxy for phyto-43

plankton biomass) (e.g. Platt, 1986) for the ”mixed” case (winter conditions) or44

on a Gaussian vertical distribution to mimic the DCM conditions (e.g. Platt et al,45

1991). Gaussian modeling actually can mimic DCM presence, but is not able to46

describe the peaks often responsible for DCM and also visible in the present data.47

We consider that the DCM outcropping events are not frequent enough so as to48

imprint the average satellite perception sufficiently to account for the persistent49

DCM maximum PP. The present cases is a clear example where the DCM was50

brought close to the surface, yet, the PP underestimation by the satellite remains.51

On the contrary, in these case such underestimation can be even larger, consider-52

ing that in normal conditions gaussian modeling can mimic DCM presence but in53

presence of strong vertical dynamics as along frontal regions.54

In the Mediterranean Sea the DCM was firstly investigated during the early55

nineties of the past century (e.g. Varela et al, 1992; Delgado et al, 1992; Raim-56

bault et al, 1993). Estrada (1996) found chlorophyll-a concentrations exceeding57

2mg/m3 in the Balearic area, recording a tight relationship of the DCM position58

with the nitracline depth. Very close to the location of the present study (Alboran59

Sea), Moran et al (2001) found DCM of about 1.4 mg/m3 through a mesoscale60

resolving sampling cruise based on CTD and bottle measurements in October61

1996. Authors estimated in the same study production maxima not exceeding 262

g C m−2d−1. Similar values of productivity were found by Videau et al (1994) for63
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the close Almeria-Oran front in the same period of the year while Rodŕıguez et al64

(1998) showed that mesoscale features shape the size-structure of the phytoplank-65

ton community in the Alboran Sea. Moreover, idealized modelling studies report66

up to ten fold local increases of productivity by submesoscale dynamics in frontal67

regions (Lévy, 2008; Lévy et al, 2012) due to large vertical velocities (Mahadevan68

and Tandon, 2006). This dynamics can be specially relevant during stratified pe-69

riods, when phytoplanktonic biomass concentrates in low-light layers.70

In this framework, the new generation of underwater autonomous vehicles assume71

an important role as they are able to resolve the submesoscale phenomena, acting72

at 1-10 km scales. In the present study, high-resolution bio-physical observations73

(temperature, salinity, fluorescence, turbidity, and dissolved oxygen) were collected74

by a Slocum glider that traversed an intense front in the eastern Alboran Sea.75

Glider measurements captured the sub-mesoscale distribution of the DCM across76

the intense density front, which highlights the role of frontal dynamics. Primary77

production estimates, obtained through a bio-optical model based on the glider78

data and synchronous bio-Argo measurements (PAR, Chl, Oxygen, Temperature,79

Salinity, Turbidity), allowed us to associate local frontal processes with production80

and export estimates. Analysis of dissolved oxygen profiles also provided impor-81

tant information on the biological and physical processes occurring at the front,82

supporting the interpretation of the bio-optical primary production estimates.83

2 Materials and Methods84

2.1 Gliders85

Two gliders, a deep and shallow Slocum glider (hereafter DG and SG respectively),86

were deployed during the interdisciplinary, multi-platform process oriented study,87

AlborEx (Ruiz et al, 2015; Pascual et al, 2017), carried out during the period 25-3188

May, 2014 (see Fig.1). Gliders SG and DG profiled to a depth of 200 m (as part of89

the Jerico-TNA proposal denominated FRIPP) and 500 m, respectively, measuring90

temperature, salinity, oxygen, turbidity and fluorescence. The sampling strategy91

was based on two parallel north-to-south transects, 10 km apart. Intense currents,92

related to the frontal area, advected gliders eastward and the sampling strategy93

(initially planned as a repeated round trip along the same route) was modified94

in real time. Gliders performed several transects crossing the frontal zone, but95

also moving eastward following the main stream direction, bordering an eddy. SG96

sampled the ocean at an approximate horizontal resolution (at surface) of 0.4 km97

(about 1 km for DG), thus achieving approximately 38 (14 for DG) dives per day.98

Glider data processing includes thermal lag correction for salinity following the99

methodology described in Garau et al (2011).100

2.2 Profiling floats101

During AlborEx, three profiling floats (Arvor-C, Arvor A3 and Prov-Bio) were102

deployed in a straight line along the frontal zone, a few kilometers apart from103

each other. The Arvor-C was programmed with 3h cycles down to 400 m. The104

Arvor-A3 was initially configured to have daily cycles. At the end of the cruise, it105
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Fig. 1 Sampling strategy of AlborEx experiment: Glider, CTD and Prov-Bio float tracks are
shown. Modified from Pascual et al (2017).

was left at sea and its cycle was changed to 5 days (MedArgo standard, Poulain106

et al, 2007) using the downlink of the Argos 3 telemetry. Both the Arvor-C and107

Arvor-A3 measured temperature and conductivity (salinity) in the water column.108

The Prov-bio float had initial daily cycles synchronized to profile near local noon109

time. It was left at sea after the campaign and its cycle was changed to 5 days110

using the Iridium downlink. In addition to temperature and salinity, the Prov-bio111

measured dissolved oxygen, Chlorophyll-a (converted from fluorescence), CDOM,112

backscattering at 700 nm, downwelling irradiance at 380, 410, 490 nm and PAR.113

The Prov-bio float measurements have been essential in order to calibrate an114

empirical model to estimate PAR from depth and Chlorophyll-a (Chl, hereafter)115

concentration (together with surface PAR obtained from atmospheric models, see116

below) collected by the gliders.117

2.3 Bottle samples and Chl measurements118

Samples for Chl and nutrients (NO−
2 , NO−

3 , PO3−
4 ) analysis were collected during119

the cruise at eight depths (5, 20, 40, 60, 90, 100, 120, 150 m) in 66 stations, using120

10 L Niskin bottles mounted on a Sea-Bird SBE32 rosette sampler. At each station121

and depth one liter of water was filtered through a Whatman GF/F glass fiber122

filter for total Chl estimation. Chlorophyll concentrations were determined fluo-123

rimetrically (Holm-Hansen et al, 1965) using a Trilogy Turner Design fluorimeter124

after pigment extraction with 90% acetone for 24 hours in the dark at 4◦C.125

Although bottle data are not the focus of the present study, chlorophyll bottle126

measurements provided reference values to compare with glider-based estimates of127

Chl, as both Glider and float fluorimeters were originally calibrated by the manu-128

facturer and no cross-calibration was performed before the cruise. Chl maxima de-129

tected through bottle measurements are comparable (slightly exceeding 5 mg/m3)130

to Chl maxima estimated through the fluorimetric method by the DG samplings131
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(see Fig.2). SG records of chlorophyll maxima are lower than DG records, with132

values of about 3.5 mg/m3, comparable to values found by Moran et al (2001).133

The discrepancy of the values between the two Gliders might be related to the134

spatial and temporal variability of the Chlorophyll field. The Chl measurements135

performed with the three different platforms (2 gliders, Prov-Bio Argo float, bottle136

direct measurements) are comparable in terms of density distribution and magni-137

tude (all platforms showing maxima around 5 mg m−3).138
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Fig. 2 Density distribution of Chl retrieved by the different sampling platforms. Shaded area
depicts the range between Chl extrema evaluated for the different data sources within 0.05
kg m−3 density bins (0.1 kg m−3 for bottle samples). It deserves to be noticed that samples
are collected in the same period and area but are not perfectly co-located both in time and
space. Sampled scales also varies between sources.

2.4 PAR vertical distribution139

The depth distribution of photosynthetically active radiation (PAR, µE m−2 s−1)140

is expressed as a bimodal attenuation function (Zielinski et al, 2002):141

PAR(z) = PAR(0).

(
ps.e

−
z∫
0

ks(z
′)dz′

+ (1 − ps).e
−

z∫
0

kl(z
′)dz′

)
, (1)

ks(z) = ks,sw + ks,Chl.Chl(z), (2)

kl(z) = kl,sw + kl,Chl.Chl(z), (3)
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with short-wave fraction ps = 0.806; sea-water attenuation coefficient for short142

and long-waves component ks,sw = 0.05295 m−1 and kl,sw = 3.189 10−6 m−1, re-143

spectively; short and long wave chlorophyll specific attenuation ks,Chl = 0.03328144

m2 (mg Chl)−1 and kl,Chl = 7.23 m2 (mg Chl)−1, respectively. These five param-145

eters were calibrated to reproduce the PAR profiles measured by the Prov-bio146

float using the R FME package (Soetaert and Petzoldt, 2010). More details are147

provided in the Appendix. Chl(z) is provided in situ from glider fluorescence data148

(and float fluorescence sensor for the model calibration phase). The surface PAR149

value was obtained from the ECMWF ERA-interim 6-hourly dataset. Such a sur-150

face PAR dataset was then resampled in time and interpolated in space to match151

the temporal and spatial framework of the glider.152

2.5 Primary Production153

Primary production has been estimated through a bio-optical method (Morel and154

Andrè, 1991; Antoine et al, 1996). In particular, (4) was applied for instantaneous155

synoptic estimations of primary production rates:156

PP (z, t) = 12Chl(z, t) a∗(z, t)PAR(z, t)φµ(z, t) (4)

where Chl is the measured concentration of Chlorophyll-a in g Chl m−3; a∗ is157

the specific absorption of phytoplankton, expressed as m2(g Chl)−1; PAR is the158

irradiance expressed as (mol quanta) m−2s−1 and φµ represents the transforma-159

tion efficiency expressed as mol C (mol quanta)−1. The PP instantaneous rates160

are converted from mol C to g C by using the carbon molar weight, which is 12161

g C (mol C)−1.162

In our specific application PP was computed as function of depth (z) and time163

(t). Space(y) was used for convenience as frame of reference in plotted glider sec-164

tions instead of time (t). We neglected the wavelengths (λ) discretization (Morel165

and Andrè, 1991; Antoine et al, 1996; Hemsley et al, 2015). As reported by Hems-166

ley et al (2015), this can imply an underestimation of depth-integrated PP values167

up to 50% in respect to the use of discretized wavelengths. Nevertheless, Zielinski168

et al (2002) showed that the bimodal approach to reconstruct the underwater light169

field (used in the present study to reconstruct the PAR profile) is comparable to170

the multiband approach by Antoine et al (1996) in terms of ability to model the171

DCM concentration. Furthermore, and most important, the bimodal model for172

PAR showed the best fitting with observed vertical PAR (see appendix).173

This instantaneous PP (g C m−3 s−1) can be integrated in time and depth to174

obtain PP estimations dimensionally comparable with satellite based estimates175

(g C m−2 d−1).176

For a∗ we used the standard value of 0.01 m2(g Chl)−1 as proposed by Morel177

and Andrè (1991), which was also used in a glider based study of the PP in the178

North Atlantic (Hemsley et al, 2015). Concerning φµ, we used the formulation179

reported by Antoine et al (1996)180

φµ = φµ,max f(x), (5)

where the transformation yield is equal to the maximum yield φµ,max (here set181

equal to 0.06 mol C /mol quanta scaled by the function f(x) (defined within 0 and182
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1), where x = PUR/KPUR and f(x) = 1−e−x

x e−βx. Here, PUR is the Photosyn-183

thetically Usable Radiance while KPUR is a scaling irradiance. β is a dimension-184

less parameter for photoinhibition set to 0.01 (Hemsley et al, 2015). KPUR is185

set as function of in situ temperature, also collected by the glider, following the186

expression (e.g. Hemsley et al, 2015):187

KPUR(T ) = KPUR(20◦) 1.065(T−20◦) (6)

We performed two separate computations of depth resolved PP: the first PP188

estimation was computed in the instrument sampling space to provide a picture189

of the actual instantaneous production in the glider space and time frame (PPg190

hereafter). In order to get such ephemeral rate comparable with a more conser-191

vative quantity as the Apparent Oxygen Utilization (AOU), we also computed a192

noon Primary Production (PPn) i.e. assuming that the glider sampled instanta-193

neously at noon of each day. So in PPn computation the time (t) dependency is194

substituted by a space (y) dependency. PPn calculation allows to relate a non con-195

servative quantity, as Primary Production is, with other variables such as the AOU196

shaped by the biological history of the water mass under investigation. The rela-197

tion between these two quantities provides precious information on the underlying198

biological processes.199

3 Results200

3.1 The AlborEx context201

The AlborEx experiment was carried out in the Eastern Alboran Sea, specifically202

at the edge of an anticyclonic mesoscale eddy (Pascual et al, 2017). This eddy was203

a persistent feature in the period immediately preceding AlborEx and during the204

sampling as well, as shown by time series of satellite single swath images in visible205

and infrared bands (Fig.3). The eddy shaped (advecting it and/or locally con-206

tributing to its production) the chlorophyll footprint in an anticyclonic curvature.207

This curvature, also visible in SST, is a characteristic imprint of a meandering jet208

of cold Atlantic waters (e.g. Tintoré et al (1988), Oguz et al (2014)) that enter the209

Alboran Sea through the Gibraltar Strait. These Atlantic waters (AW), circulated210

along the eddy periphery and entrained into Mediterranean waters (MW) in the211

north-eastern side of the mesoscale eddy, forming sharp gradients visible in SST.212

During the AlborEx experiment, gliders intercepted one of these filaments and213

unveiled remarkable chlorophyll subduction underneath them (Fig. 4), subduction214

reaching and exceeding 100 m depth in terms of chlorophyll signature.215

3.2 Hydrography and deep chlorophyll maximum216

In the following, the SG sampling is considered in virtue of its finer spatial resolu-217

tion reaching sub-mesoscale. AlborEx gliders sampled a sharp front in salinity at218

the confluence of Atlantic and Mediterranean waters (Fig. 5a). Such salinity gra-219

dient was the main responsible for a lateral density gradient of ∆ρ ∼ 1 kg m−3 in220

about 10 km (Fig. 5b). Subsurface chlorophyll patches within the DCM (Fig. 5c)221
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Fig. 3 Series of satellite data (MODIS Level-2 single swaths). First image (top left) is for May
3, 2014 and last image for May 30 (bottom right). Colored images are ocean color, black-white
are SST. Left to right and top to bottom, days of May 2014: 3, 5, 12, 18, 21, 25, 27, 29, 30.
The glider sampled the frontal/eddy system between May 25 and 30 (last four images).

reached extremely high concentration (up to 3 mg m−3 for SG and 5 mg m−3 for222

DG and bottles, see Sect. 2.3) in respect to usual values for the Mediterranean223

DCM, even in such strong frontal areas (cf. Moran et al, 2001, with maximum of224

1.4 mg m−3).225

The Chl distribution is strongly heterogeneous in both the horizontal and the226

vertical dimension, suggesting strong frontal dynamics. Such patchiness can be227

related to the static stratification of the water described by the buoyancy fre-228

quency. Chlorophyll contours of 0.5 mg m−3 (Fig. 5d) match quite well with the229

relative lows of buoyancy frequency within the 30–60 m layer. In the fresh side230

of the front, Chl patches were found across the mixed layer limit, defined with231

a density threshold of 0.03 kg m−3 (de Boyer Montégut et al, 2004) with respect232

to a sub-surface reference level at 20 m (shallowest depth of glider sampling). In233

contrast, in the high-salinity side of the front, deep patches (> 60 m) are located234

well below the area of high stratification (high values of N2). Large values of Chl235

are found concurrently with isopycnal doming on the fresh side of the front and236
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Fig. 4 SST field (the horizontal plane on the top) superimposed on the vertical Chl distribu-
tion detected by the SG glider. Units for SST are Celsius degrees ◦C from which have been
subtracted -19 ◦C (in order to keep a single palette and colorbar) and log(Chl) in mg m−3 for
Chl.

within the interface (i.e. not in the core of the fresh waters). Such doming suggest237

the presence of upwelling/downwelling motion along isopycnals, also confirmed by238

disruptions in stratification.239

The vertical distribution of Chl seems primarily determined by the density of240

water masses and secondarily by the vertical motion of such water masses. Indeed,241

water mass density instead of depth allows to distinguish different ”populations”242

(not in biological sense) of planktonic biomass distribution (Fig. 6). The relation243

with potential density discerns three different peaks respectively for MW, AW and244

interface waters. On the contrary, AW and MW peaks are partly superimposed in245

the Chl-depth relation.246

3.3 Primary Production247

Estimated primary production rates, both in the glider sampling frame (PPg,248

Fig.7a) and in the synoptic frame at noon (PPn, Fig.7b) are shown. It is evi-249

dent, as expected, that production patches are coincident with patches of high250

Chl concentration, in particular for the shallowest ones upwelled along isopycnals.251

Instantaneous values per unit of volume (converted in daily rates for convenience252

of representation) reach 0.5 g C m−3 d−1 for PPg and exceeds 0.8 gC m−3 d−1 for253

PPn.254

Integrated quantities over the euphotic layer (defined as the depth at which255

PAR equals 1% of the surface value) for PPg estimates are reported in Tab. 1, to-256

gether with averaged values for the main satellite PP products (averaged along the257

glider track from the 8-days level-3 product covering the sampling period, please258
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Fig. 5 a) Salinity; b) Density ρ, kg/m3, with MLD superimposed (red curve); c) Chlorophyll,
mg m−3, with superimposed isopycnals (grey curves); d) buoyancy frequency N2 with the
Chl=0.5 mg m−3 contour superimposed in white. Cross-front sections correspond to the coastal
glider (see Fig. 1 for trajectory).
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Fig. 6 Scatterplot of Chl (mg/m3) vs a) depth (m); b) potential density (kg/m3). For both
panels, color is salinity. It is evident how chlorophyll peaks are better discerned in terms of
potential density.

see http://www.science.oregonstate.edu/ocean.productivity/ for satellite prod-259

ucts documentation). It is evident that satellite products tend to largely under-260

estimate Chl and PP values in frontal zones during the stratification period, i.e.261

when the light-limited production mainly takes place within the DCM and can be262

boosted at depth by uplifting mechanisms without strong surface manifestation.263
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Fig. 7 Primary production estimates a) in the sampling space (PPg) and b) synoptic estimates
at noon (PPn). In panel b) the x-axis is expressed in terms of ”profiles” instead of ”time”
accordingly to the synoptic assumption done for PPn computations. Units are g C m−3 d−1.
Black dashed lines indicate 1 mg m−3 Chl contour.

Table 1 Vertically integrated primary production averaged along the glider track, considering
present estimates (PPg) and three of the main products for PP freely distributed. Units are
g C m−2 d−1

PPg sat VGPM sat CBPM sat Eppley

1.32 0.68 0.32 0.46

Such value, we remind strictly related to this particular front and sampling, on264

one hand exceeds in situ estimations of integrated production during spring period265

in high trophic areas of Mediterranean, as for instance the Gulf of Lyon (Lefevre266

et al, 1997, reporting integrated maxima of 0.5 g C m−2 d−1). On the other hand,267

it is close to the largest estimations we found for integrated production during268

the stratification period for the NW Mediterranean (Estrada, 1996, with about 2269

g C m−2 d−1) but retrieved in October, at the end of the stratification season.270

3.4 Apparent Oxygen Utilization271

Apparent Oxygen Utilization (AOU) helps in understanding the processes under-272

lying the observed Chl distribution and PP. AOU is computed as the difference273

between the theoretical (i.e. at saturation) and observed oxygen concentrations274

(expressed in umol/l). It can be considered as a buffer diagnostic, which integrates275

in time the biogeochemical terms of oxygen dynamics in aquatic environments.276

Large negative values of AOU were found during the glider sampling (Fig. 8) from277

the surface down to the oxycline (here defined as the depth where the oxygen278

vertical gradient is the largest). In biologically active layers (such as the DCM279

and the mixed layer), such negative values indicate that oxygen production rates280

exceed consumption rates. The change of sign, negative to positive from surface281

to bottom, happens concurrently with centers of biological production located in282

the DCM, with steeper vertical AOU gradient in the AW (at the interface), and283

smoother gradient for the DCM located in the bulk of the MW (Fig. 8).284

A negative linear relationship is observed between AOU and log(PPn) (Fig. 9, scat-285
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ter plot restricted to waters with large phytoplankton content, Chl > 0.5 mg m−3),286

supporting the validity of PP estimates. The slope of this relationship is steeper287

for mixed waters (1027 < ρ < 1028.3 kg/m3), where the largest production occurs288

(Fig. 8a), than for Mediterranean waters (ρ > 1028.3 kg/m3). The bulk of Atlantic289

waters (ρ < 1027 kg/m3) show an inverse relationship between AOU and log(PPn).290

The milder slope in MW, where negative AOU values are associated with poorly291

productive layers, suggests the subduction of formerly productive waters to low-292

light layers on the Mediterranean side of the front, still preserving negative AOU293

values (i.e. oxygen supersaturation).294

Figure 9b depicts the same relationship but colored as function of the backscat-295

tering/Chl ratio (Optical Community Index, Cetinić et al, 2015). Large values of296

this ratio indicate a larger probability for the prevalence of microphytoplankton297

and diatoms dominated communities, while small values the prevalence of pico298

and nano-phytoplankton. It is interesting to note that such ratio does not change299

between AW and MW, while it assumes large values (for the mixed waters with300

a density ρ of about 1027.5 kg/m3, cfr. with panel a) in coincidence with the301

largest PP values. Also, the lowest values of the Optical Community Index are302

found along the same cloud of points related to the mixed waters concurrently303

with low PP values. Accordingly to the findings of Ruiz et al. (submitted), the304

latter patches are being subducted due to submesoscale frontal dynamics along305

the interface between two water masses. Consequently, they are likely subject to306

acclimation (physiological and/or at community level) to the new light conditions.307

These observations suggest that the physical environment, in these particular308

conditions, is able to shape the phytoplankton community at the sub-mesoscale309

(1 − 10km) and in coincidence with the frontal region, in agreement with recent310

observations reporting the sub-mesoscale spatial structuring of phytoplankton at311

population level (Mousing et al, 2016).312

Fig. 8 a) Apparent Oxygen Utilization (AOU, umol/l) distribution in the top 120 m. Thick
red line is the zero AOU curve. b) AOU vertical gradient. Black dotted (labeled) lines on both
panels corresponds to iso-contours of PPn.



14 Antonio Olita et al.

−15 −10 −5 0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

AOU (umol/l)

lo
g
(P

P
) 

g
 C

 m
3
d
−

1

a)

 

 

1027

1027.2

1027.4

1027.6

1027.8

1028

1028.2

1028.4

1028.6

1028.8

AW

MW

Mixed

−15 −10 −5 0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

AOU (umol/l)

lo
g
(P

P
) 

g
 C

 m
3
d
−

1

b)

 

 

1

1.5

2

2.5

3

3.5

Fig. 9 Scatterplot of AOU vs log(PPn) colored as function of a) density (kg/m3); b) Backscat-
tering/Chl ratio (digital counts)



Fronts boost primary production in the stratified Mediterranean 15

4 Discussion and Conclusions313

The present study uses a set of high resolution bio-physical glider observations314

(salinity, temperature, oxygen, fluorescence, turbidity) to investigate the impact315

of frontal processes on the primary production associated to a Deep Chlorophyll316

Maximum. The primary production is estimated using a methodological approach317

similar to that presented by Hemsley et al (2015) in the North Atlantic. The two318

main variations of this method here are the estimation of PAR radiation, which is319

based on synchronous PAR observations performed through Argo floats, and the320

use of a single irradiance value for PP algorithm (not discretized in λ bands).321

DCM is known to be an ubiquitous feature that, in temperate regions, onsets af-322

ter seasonal thermal stratification and consequent nutrient depletion of the top323

mixed layer (Cullen, 1982). This simple theoretical frame for DCM formation and324

functioning is complicated by presence and action of ubiquitous mesoscale and325

sub-mesoscale structures. It was largely shown (cfr. McGillicuddy, 2016; Mahade-326

van, 2016, for two reviews about impacts of mesoscale and submesoscale dynam-327

ics, respectively) that (sub-)mesoscale features impact the biology through several328

mechanisms. Nutrient uplift of nutrients; subduction of organic matter; dynamical329

re-stratification (Taylor and Ferrari, 2011a; Mahadevan et al, 2012) are some of the330

main processes impacting biogeochemistry and consequently biology at such scales.331

Very little can be found in literature about the role of such dynamical features332

in the modulation of the biological activity during stratification and DCM onset.333

During stratification, while the ML is nutrient-limited the DCM is substantially334

light-limited. At such low light conditions, photoacclimation processes may occur335

(Lazzara et al, 1996; Mignot et al, 2014), determining an increase of the Chl con-336

tent in cells and a possible decoupling of the biomass peak from the DCM (Mignot337

et al, 2014). Given that the PAR reaching the DCM is usually between 1 and 10%338

of the incident radiation at surface (Siswanto et al, 2005), it could be assumed a339

weak contribution of DCM to total annual production. In this case, the error in340

satellite-based production estimates, associated with the inability of space-borne341

sensors to see the full euphotic water column and with the consequential need for342

approximations (namely uniform or gaussian distributions of Chl along the water343

column), could be actually negligible.344

This picture can be drastically modified by the intervention of (sub-)mesoscale345

dynamics, as observed in the present study. Biomass and production estimates346

obtained in-situ during AlborEx are unusually high for such period of the year347

in comparison to satellite-based estimations, notwithstanding the prudent ap-348

proach we adopted in estimating primary production. The largest production is349

observed concurrently with shallower phytoplankton patches, initially belonging350

to the DCM level and therefore substantially light-limited, up-lifted to euphotic351

depths by mechanisms related to mesoscale and to frontal (ageostrophic) dynam-352

ics (Ruiz et al, 2017). The bio-optical estimations of large primary production353

levels (1.3 g C m2d−1) are supported by negative AOU values within the ML and354

negative AOU/production relationship, having a different slope for the different355

water masses. The steepest slope is found for mixed waters, which is indicative356

of a tighter coupling between production and AOU, i.e. a more intense biological357

activity.358

It is quite instructive to look upon the vertical/pycnal distribution of Chl359

through the lens of the hysteresis theory for DCM presented by Navarro and Ruiz360
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(2013). The Authors observed worldwide that the vertical position of the DCM361

is better explained in terms of density, following the seasonal history of water362

masses, than in terms of instantaneous physico-chemical, depth-related diagnostics363

(eg. mixed layer depth, nutricline). In a few words, the density at which the DCM364

forms during stratified conditions corresponds to the density of the previous winter365

mixed layer bloom. The authors suggest that, during winter blooms, the planktonic366

assemblage is tailored around the density conditions of the winter mixed layer,367

and that this preference persists along the seasons and impress upon the vertical368

position of the DCM during the stratified period.369

Here, two water masses of distinct origins encounter forming a sharp front.370

According to the hysteresis paradigm, they carry distinct populations, tailored to371

distinct density levels, which is in agreement with the distribution pictured on Fig.372

6b. In general, the uplifting of the AW DCM isopycnal in euphotic depths triggers373

high primary production. But the highest PP occurs in mixed waters, i.e. on the374

Atlantic, fresher, side of the front. Here, a change in the planktonic assemblage375

(and/or a physiologic adjustment) is suggested by the Optical Community Index376

(Fig. 9b). It could be speculated that favorable conditions (light and nutrients)377

are met in a new density niche emerging at the front, which the dominant species378

of the Med and Atlantic assemblages might not be used to exploit. This would379

lead to a reorganization of the planktonic web structure (Mousing et al, 2016) in380

which a new player is able to grow, unchallenged on these short time-frame.381

Clearly, the preceding paragraph is highly speculative at this point. Our pri-382

mary statement is that a sub-surface increase in the DCM production, substan-383

tially unspotted from space, is caused by strong vertical motions at the front (Pas-384

cual et al, 2017). This is directly supported by the presented results and does not385

require any assumption regarding the reason behind the different DCM positions386

in Atlantic and Mediterranean waters. Beyond that, our observations also suggest387

that frontal dynamics might affect biogeochemical processes through strictly bio-388

logical mechanisms and call for further investigations. Such efforts would have to389

be supported by an AlborEx-like cruise but complemented with in-situ production390

estimates and microscopic analyses to characterize planktonic populations.391

The high production rates estimated along the frontal area, also previously392

reported in the literature for frontal regions of the Alboran sea (Videau et al,393

1994; Moran et al, 2001, with maxima of ∼ 2 g C m2 d−1), may be relevant to better394

understand the functioning of the Mediterranean ecosystem. It is still unclear, for395

instance, how the Mediterranean can sustain a large yield of fish catches (and396

thus a large secondary production) in front of a relatively low primary production397

(Estrada, 1996). Could the chronic underestimation of the production related to398

the DCM explain this issue? On the one hand, it could be argued that such large399

values of production could be found only locally in the vicinity of intense fronts.400

On the other hand, the entire southern part of the Western Mediterranean (the401

Algerian Basin) is largely populated by mesoscale AW eddies and therefore frontal402

structures at the periphery of these eddies, such as the one intercepted in our403

study, may be ubiquitous in the area. The application of the present glider-based404

methodology for PP estimation (properly calibrated) to a larger Mediterranean405

dataset covering the eddy field of the Algerian Basin, during DCM conditions,406

would substantially help to reply to the above question, still unresolved.407
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419

A Calibration of the optical model420

The pragmatic objective of this section is to calibrate, on the basis of the Prov-Bio optical421

data (Sect. 2.2), an optical model suited to reconstruct the PAR conditions along the AlborEx422

coastal glider (SG) transect. For this specific objective, only the profiles obtained between the423

26st of May and the 7th of June were considered, when the Prov-Bio path was close to the424

AlborEx front.425

Fig. 10 Optical parameters recorded by the Prov-Bio floats near the AlborEx front.

Several candidate optical models were tested, considering a single bandwidth with Chl and426

CDOM attenuation (PAR1), or two bandwiths (Zielinski et al, 2002) with attenuation from427

Chl only (PAR2) or Chl and CDOM (PAR3):428
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PAR1

PAR(z) = PAR(0).e
−

z∫
0
k(z′) dz′

with k(z) = k0 + kChl.Chl(z) + kCDM .CDM(z)

(7)

PAR2


PAR(z) = PAR(0).

ps.e− z∫
0
ks(z

′)dz′

+ (1 − ps).e
−

z∫
0
kl(z
′)dz′


ks(z) = ks,0 + ks,Chl.Chl(z)

kl(z) = kl,0 + kl,Chl.Chl(z)

(8)

PAR3


PAR(z) = PAR(0).

ps.e− z∫
0
ks(z

′)dz′

+ (1 − ps).e
−

z∫
0
kl(z
′)dz′


ks(z) = ks,0 + ks,Chl.Chl(z) + ks,CDM .CDM(z)

kl(z) = kl,0 + kl,Chl.Chl(z) + kl,CDM .CDM(z)

(9)

For the sake of simplicity, and since all profiles were taken at the same hour of the day in429

a 12-day interval, the incoming surface radiation was considered to be identical for all profiles430

and was tuned as a single parameter. Only two profiles were excluded for the calibration431

(corresponding respectively to the 1st and 5th of June) as they presented obviously affected432

incoming surface radiation, for instance due to cloud cover (Fig. 10).433

The parameters of models PAR1, PAR2 and PAR3 were calibrated to reproduce at best434

the corresponding Prov-Bio PAR profiles, when applied on the concurrent Chl and CDOM435

data. The skill associated with each model is given as the root of the PAR mean squared436

residuals evaluated for all the selected profiles (i.e., 11 profiles consisting of ∼ 215 measurement437

each) and are provided in Table 2).438

PAR Model Number of parameters RMS
PAR1 4 42.77
PAR2 6 41.20
PAR3 8 41.23

Table 2 Number of parameters and model skill evaluated for the optical models.

The consideration of two band widths in models PAR2 and PAR3 enhances the model439

skills. The consideration of CDOM in PAR3 does not appears beneficial in what regards the440

model skill, and poses an additional question in terms of parameter identifiability.441

We finally retained model PAR2, with parameters PAR0 = 1532 µE m−2 s−1; ps = 0.806;442

ks,sw = 5.295 10−2 m−1; kl,sw = 3.189 10−6 m−1; ks,Chl = 3.328 10−2 m2 mg Chl−1; kl,Chl =443

7.23 m2 mg Chl−1;444

The probability distribution around those values, as well as the dependencies between445

different parameter estimates, are depicted on Fig. 11 showing the distribution of parameter446

values retained in a Monte Carlo Markov Chain procedure (Soetaert and Petzoldt, 2010). The447

pairwise relationships between successful parameter sets indicate a strong correlation between448

the long-wave band attenuation coefficients for sea-water (kl,sw) and Chl (kl,Chl). In other449

terms, the good matching between simulated and observed PAR profiles is somewhat equivalent450

whether the long-wave band is attenuated by seawater or Chl. We retained the best parameter451

values indicated above, which gives a large weight to Chl for the long-wave attenuation, but we452

checked carefully that the PP estimates obtained from SG data were only marginally affected453

when using a parameter set in which long-band attenuation was driven by sea water.454

The PAR2 model provides a representation of the PAR profiles suitable for the next steps455

of this study (Fig. 12, with percentage residuals always below 50% and usually well below 25%456

in the upper 60 m, a depth below which PAR is always lower than 5% of the surface incoming457

radiation.458

As the model calibration was restricted to AlborEx Prov-Bio input data we do not pretend459

that our conclusions concerning the optical model suitability apply, for instance, to the entire460
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Fig. 11 Marginal parameter distributions (diagonal), pairwise relationship (upper panels)
and correlation coefficients (lower panels) between parameters of the optical model PAR2,
obtained by applying a Markov Chain Monte Carlo procedure as described in (Soetaert and
Petzoldt, 2010). Note the strong relationship between the calibrated sea water and chlorophyll
attenuation coefficient, in particular for the long-wave light band.

Mediterranean Sea, over which the concentrations of optically relevant water constituents vary461

on ranges much larger than those encountered here.462
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