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We study the effect of subgrid-scale (SGS) mixing on the evolution of a density front initially in thermal- 
wind balance with a meridional density gradient and forced by downfront surface winds. The horizontal 
size of the model domain (O(100 km)) is large enough to contain mesoscale eddies while the horizontal 
grid resolution (500 m) is fine enough to resolve submeso scale eddies. The twin goals of this study are: (i)
to determine what is a realistic level of SGS dissipation; and (ii) to explore the sensitivity of the resolved- 
scale dynamics to the SGS dissipation. To this end, we effect different levels of SGS dissipation using two 
SGS models: (i) constant lateral SGS viscosities (1 m2 s�1 and 5 m2 s�1) and an analytically prescribed ver- 
tical SGS viscosity; and (ii) an existing anisotropic Smagorinsky model (ASM) developed for anisotropic 
grids with large aspect ratios between the horizont al and the vertical directions. An analysis of the eddy 
kinetic energy (EKE) budgets shows the surface stress boundary condition constrains all simulations to
yield realistic values of SGS dissipation in a near-surface layer that is shear-driven and similar to the tra- 
ditional Monin–Obukhov layer. Deeper down within the mixed layer, the EKE budget is buoyancy-driven 
with a more complicated balance that varies considerably among the different simulations. The simula- 
tions with constant Kx predict the buoyant generation of EKE is balanced almost solely by pressure trans- 
port wit h negligible local destruction, which gives rise to waves near the front. Recent observations near 
fronts show enhanced levels of irreversible destruction. The simulations with the ASM predict EKE bud- 
gets where both local destruction—through SGS dissipation—and pressure transport are part of the EKE 
balance.

The results obtained using the constant- Kx simulations suggest both horizontal and vertical SGS 
parameterizations have important effects on the resolved-scale dynamics. The simulations with 
Kx ¼ 5m2 s�1 yield the most unrealistic results partly because the lateral viscosity is high enough to
directly influence the instability scale. Yet the observed differences among the constant- Kx simulations
are sometimes subtle and cannot be explained trivially by comparing Kx alone. For fixed Kx, we find sim- 
ulations can exhibit higher spectral levels and stronger cascades (forward and inverse) upon increasing 
the vertical SGS viscosity. This suggests the sensitivity of submesoscale-resol ving simulations to the ver- 
tical SGS parameterization needs to be better explored.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

In the ocean, submesosca les are scales of motion smaller than 
the Rossby radius of deformation but large enough to be influenced
by planetary rotation (Thomas et al., 2007 ). Numerical studies 
show oceanic density-fron ts are active sites of submeso scale insta- 
bilities (Capet et al., 2008c,a,b; Fox-Kemper et al., 2008; Klein et al.,
2008; Mahadev an, 2006; Mahadev an and Tandon, 2006 ) which oc- 
cur in strongly frontogeneti c regions associate d with O(1) Rossby 
number (Ro), thereby creating condition s suitable for departure 
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from balanced dynamics (Molemaker et al., 2010; Molemak er
and McWilliams, 2005 ). The O(1) Ro implies the dynamics at the 
submeso scales is not amenable to classical quasi-geost rophic 
(QG) analysis which assumes Ro� 1 (Pedlosky , 1987 ).

A case study considered often in the literature and in some of
the studies cited above is the evolution of a density front forced 
by downfront surface winds, which create loss of balance by
destroyin g potential vorticity (PV) near the surface (Thomas,
2005) (Downfront winds are winds aligned with the frontal jet in
thermal-wind balance with the lateral density gradient). In simula- 
tions such systems spawn submeso scale motions with O(100 m/
day) vertical velocities at the frontal edges (Mahadev an, 2006 ).
Such rapid vertical motions can accomplish the transport of nutri- 
ents from the ocean interior to the surface on inertial time-scal es
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and thus, could be an important factor governing phytoplankton 
production in the upper ocean (Lévi et al., 2001; Mahadevan and 
Archer, 2000 ).

Submesoscal es have been conjectured to play an important role 
in the downscale transfer of energy from the O(100 km) meso- 
scales to scales O(0.1–100 m) associated with three-dim ensional 
isotropic turbulence (Muller et al., 2005 ). This hypothesis has re- 
ceived support from simulations (Capet et al., 2008c ) which show 
an onset of a forward cascade within the submesosca les. The mes- 
oscales exhibit an inverse cascade of energy, on average, consisten t
with the quasi-geost rophic (QG) framework (Charney, 1971;
McWilliams et al., 1994 ) while small-scale turbulence exhibits a
forward cascade of energy, on average (Tennekes and Lumley,
1972). Submesoscal e instabilities, by enabling forward cascades 
of energy in localized regions of unbalanc ed dynamics, can thus 
create pathways for the local removal of mesoscale energy in the 
ocean interior (Capet et al., 2008b; McWilliams, 2003 ), away from 
the boundaries.

Theory and numerica l experiments (Boccaletti et al., 2007;
Fox-Kemper et al., 2008 ) show submesoscale baroclinic instabili- 
ties significantly enhance the rate of restratification of the mixed 
layer (ML), implying one-dimensi onal mixing parameterizati ons,
which neglect lateral processes, might fare poorly near density 
fronts. The stratification due to these instabilities can be an order 
of magnitude larger than that due to geostrophic adjustment alone 
(Mahadevan et al., 2010; Tandon and Garrett, 1994 ).

Past numerica l studies of oceanic submeso scales can be divided 
crudely into one of two categories: (i) Simulations in computa- 
tional domains that contain and resolve both mesoscale and sub- 
mesoscale features, but are too coarse to resolve the smaller,
turbulent scales;1 and (ii) Large-edd y simulations (LES) in smaller 
domains with grid resolutio ns fine enough to resolve the turbulen t
scales. The former category is suitable for studying the evolutio n
and coupling of meso- and submeso-sca les whereas the latter is
ideal for identifyin g mechanisms that trigger a forward cascade of
energy to the smaller, isotropic scales associated with three-dimen -
sional turbulent mixing. In the first category are studies by Mahad-
evan (2006), Mahadev an and Tandon (2006), Thomas et al. (2007),
Capet et al. (2008c,a,b), Fox-Kemper et al. (2008) and Klein et al.
(2008). These authors employed domains that are O(100 km) in
the horizontal and O(100 m–1 km) in the vertical with correspond- 
ing grid resolutio ns of O(500 m–1 km), and O(1–10 m),2 respec-
tively. Our present study belongs in this category. The second 
category includes LES by Ozgokmen et al. (2011), Skyllingstad and 
Samelson (2012), Taylor and Ferrari (2009) and Taylor and Ferrari 
(2010) among others. These authors use domains that are 
O(1–10 km) in the horizontal and O(100 m) in the vertical with 
isotropic grids having O(1 m) resolutio n. The LES studies have grid 
resolutio ns fine enough to resolv e three-dimens ional turbulent mo- 
tions and some of them (Skyllingst ad and Samelson, 2012 ) use do- 
mains large enough to contain a 6 km baroclini c eddy. Both classes 
of simulations described above are differen t from the so-called MO- 
LES (Fox-Kemper and Menemenl is, 2008 ), or Mesoscale Ocean Large- 
Eddy Simulations, where the grid resolutio n is fine enough to resolve 
the mesoscale kinetic energy spectrum but too coarse to resolve sub- 
mesosca les. In MOLES, the grid-scale is associat ed with a direct po- 
tential enstrophy cascade but not with a forward cascade of
energy. In submesosca le-resolving simulations the average spectral 
flux of energy switches from an inverse to forward cascade at scales 
O(1–10 km) (Capet et al., 2008b ), that are larger than the grid-scal e
(Capet et al., 2008b; Klein et al., 2008 ). Thus, such simulations—un- 
1 These are sometimes referred to as SMOLES (Submesoscale & Mesoscale Ocean 
Large-Eddy Simulation.)

2 This refers to the near-surface vertical resolution as these studies typically use a
vertically stretched grid.
like MOLES—might be compatibl e with traditional LES subgrid-s cale 
(SGS) closure s which typically (but not always) are designed to en- 
sure a net forward cascade of energy from the resolved to the sub- 
grid scales of motion.
1.1. LES versus RANS subgrid-s cale models 

In LES subgrid closures the subgrid length scale is modelled as
proportio nal to the grid spacing. In RANS (Reynolds Averaged Na- 
vier–Stokes; Launder et al., 1975 ) modelling the subgrid length 
scale must be parameterized as the grid spacing is too coarse to
be a physically relevant length scale for the subgrid motions. It fol- 
lows the SGS viscosity and diffusivity move in lockstep with the 
grid spacing in LES but not in RANS closures like the K-Profile
Parameter ization (KPP; Large et al., 1994 ) or the k-� family of mod- 
els (Pope, 2000 ), for instance. An SGS model has two distinct func- 
tions: (i) parameterizati on of the SGS stresses (or fluxes); and (ii)
dissipatio n of the resolved scales. In well-resolve d LES the subgrid 
terms are of leading order in the balance of the resolved-scale ki- 
netic energy but not in that of resolved-scale momentum. The de- 
tails of the modelled SGS stresses (and fluxes) are of secondar y
importance to the ability of the SGS model to dissipate the large 
eddies in a realistic manner. Thus, modelled SGS stresses that cor- 
relate poorly with DNS fields can neverthe less be tuned to extract 
energy from the resolved scales in a physically consistent manner 
(Reynolds , 1990 ). In RANS the turbulence resides entirely at the 
subgrid scales with none of it resolved by the grid. The subgrid 
divergen ce terms are, therefore, of leading order in the evolution 
of the resolved-scale momentum field which places additional de- 
mands on the SGS closure, namely, that of parameterizi ng the 
unresolv ed scales accurately as they now account for a significant
fraction of the total turbulent stresses. The two functions of the 
SGS model are now intertwined and cannot be addressed in isola- 
tion. We emphasize paramete rizing the SGS stresses accurately is a
concern to the extent it is necessary to achieve realistic SGS dissipa- 
tion. A focus on the former for its own sake is of questionable value 
as there exist SGS models that dissipate insufficiently in simula- 
tions in spite of encouraging correlations with DNS fields in offline
tests.3

In principle, increasing the resolution progressive ly warrants a
move away from RANS closures toward LES closures but a sharp 
transition between these two regimes is unlikely (Wyngaard,
2004). The issue of LES versus RANS is complicated further when 
various factors, such as, strong stratification, solid surfaces, etc.
limit the eddy length scale to scales finer than the grid resolution 
leading to RANS-like conditions in select regions of the flow even 
at resolutions typical of LES (Sullivan et al., 1994 ). The engineering 
communi ty has long wrestled with the LES–RANS dichotomy with- 
in the context of ‘‘Hybrid LES’’ (Spalart et al., 1997; Speziale, 1998 )
and Detached Eddy Simulation (DES; Spalart, 2009 ) methods 
which, broadly speaking, advocate switchin g between RANS and 
LES based on the flow physics. For instance, many hybrid LES 
methods use a RANS model near a solid surface and an LES solution 
away from it, matching the two solutions across the LES–RANS
interface. Other studies (Perot and Gadebusch, 2009 ) have adopted 
a different approach by questioning the very basis for the LES–
RANS dichotomy and arguing RANS closures can perform consis- 
tently at any resolution. The above arguments give an indication 
of some of the challenges involved in developing reliable subgrid 
models at resolutions nestled in between the LES and RANS 
3 In offline or a prio ri testing we construct the SGS fields by filtering DNS or
measured fields down to the appropriate scale. No simulations using the SGS model 
being assessed are necessary for this mode of testing. Assessing an SGS model based 
on its real-tim e performance in a simulation, as in the present study, is referred to as a
posteriori testing.
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regimes. To what extent do these issues bear on meso- and sub- 
meso-resolv ing simulations? Answering this question will require 
more studies targeted specifically at exploring resolved-subgr id
interactions as a function of grid spacing. A recent example of a
study with similar, but not identical, goals is the investigatio n of
submesosca le dynamics in tropical instabilit y waves of the Pacific
ocean using a series of simulations at different resolutions (Marc-
hesiello et al., 2011 ). The simulations explicitly set lateral SGS mix- 
ing to zero and use the KPP scheme for vertical SGS mixing. They 
found the effects of numerical mixing are significant at wavenum- 
bers well below the grid-cutoff wavenumber which implies the 
effective resolution of the simulation is lesser than that allowed 
by the grid. The effective resolution could depend potentially on
the SGS model as well, through its dissipation characterist ics.

1.2. Motivation of this study 

The previous discussion raises several concerns, of which we
now list a few we believe are important:

1. How sensitive are the resolved- scale features in meso- and sub- 
meso-resolv ing simulations to the level of SGS dissipation? Is it
possible to determine what is an appropriate level of SGS 
dissipation?

2. For a given level of SGS dissipation, which family of SGS clo- 
sures yields better resolved- scale statistics? LES or RANS? 

3. Given an SGS dissipation level and a class of SGS closures (LES
or RANS) which SGS closures within that class yield better 
resolved-sca le statistics? Are there common features that char- 
acterize the closures that yield superior results? 

The first of these questions is the focus of the present study. In the 
manner posed, each question is a logical extension to its predeces- 
sor and the insights gained from one will help answering the other.
Our emphasis on SGS dissipation follows from the arguments out- 
lined earlier. We use a small set of closures to effect different levels 
of SGS dissipation: (i) an LES subgrid closure, the anisotropic Sma- 
gorinsky model (ASM; Roman et al., 2010 ); and (ii) constant lateral 
SGS viscosities with an analytically prescribed vertical SGS viscos- 
ity. A wider selection of SGS models is unnecessary for our stated 
goals as we demonstrate in the course of this paper. We simulate 
a baroclinic front confined to the mixed layer and forced by down- 
front winds, a set-up common to some of the numerical studies 
cited earlier. The downfront winds aid in propping up the front 
by Ekman advection of heavier over lighter water while the sub- 
mesoscale instabilities relax the front by extracting the reservoir 
of available potential energy in the front. The combined effect of
these two competing forces will determine whether there is net 
destratification, net restratification or a dynamic equilibrium 
between these two mechanis ms (Mahadevan et al., 2010 ).

We use the Process Study Ocean Model (PSOM, Mahadevan,
2006), a three-dimensio nal, non-hydrostat ic, Boussinessq model 
for all simulatio ns. Our choice of the ASM for the LES subgrid clo- 
sure is motivated by its simplicit y and ease of implementati on. The 
Smagorinsky model (SM; Smagorinsky , 1963; Lilly, 1967 ) and its 
subsequent variants are arguably the most basic of LES subgrid clo- 
sures. An earlier study (Fox-Kemper et al., 2008 ) used a Smagorin- 
sky SGS model to parameterize lateral SGS mixing in conjunction 
with a constant background vertical SGS viscosity. They explicitly 
set the SGS diffusivity to zero. The ASM prescribes both lateral 
and vertical SGS viscosities (and diffusivities). Furthermor e, it
accommodates anisotropic grids and hence is suitable for our sim- 
ulations where the horizontal grid resolution is much coarser than 
the vertical grid resolution.

Some comments about the nature of our intended comparis on
are in order. In a trivial sense it is evident two simulatio ns with 
different SGS dissipation will evolve differently. Less evident is
which features of the resolved-sca le flow evolve differently and 
whether the observed differences are critical enough to merit our 
attention . While comparing the various simulations we highlight 
those differenc es that are central to the evolution of the submeso- 
scale instabilities. Where possible, we look for common causes 
underlyin g these differences. Evaluating the performanc e of an
SGS model is easier when either DNS, measureme nts or theory pro- 
vide reliable benchma rks against which the model results can then 
be assessed . An example of such an instance is well-reso lved LES of
3D turbulence where the grid spacing resolves the inertial-sub -
range. Under such condition s Kolmogor ov’s universal scaling for 
the inertial-subran ge spectra, validated by extensive DNS and 
experime ntal evidence, predicts the ‘‘correct’’ level of dissipation 
an SGS model must achieve and tuning the SGS model accordingly 
is a straightforw ard exercise. We presently lack similar scaling 
arguments when the grid spacing lies within the submesoscales,
from either theory or measureme nts. The O(100 km) size of our 
proposed computati onal domains implies DNS is unfeasibl e.
Comparis ons with DNS of smaller domains that do not contain 
the mesoscales are of limited value as the straining of the density 
field by the larger mesoscale eddies is an essential ingredient for 
the ‘‘mesoscale to submesosca le transition’’ (Capet et al., 2008c ).
In the absence of existing guidelines for the optimal level of SGS 
dissipatio n, we use the eddy kinetic energy budgets to estimate 
physically meaningful levels for the SGS dissipatio n under quasi- 
equilibriu m conditions where the restratification and destratifica-
tion tendencies counter each other approximately. Such an
estimate is useful inasmuch as it offers an order of magnitude for 
the SGS dissipation and can be computed using the large-scale 
paramete rs of the simulation.

1.3. Outline 

In Sections 2.1 and 2.2 we describe the model equations in
PSOM and the SGS model, respectively. Section 3 describes the ini- 
tial conditions and the set-up of the numerical simulations. We
discuss results in Section 4 and summari ze our conclusio ns in
Section 5.
2. Modelling 

For notational ease we switch between the indexed and the 
conventi onal representat ion of variables when necessary. For in- 
stance, the symbols fxi; ði ¼ 1;2;3Þg and ðx; y; zÞ are equivalent as
are fui; ði ¼ 1;2;3Þg and ðu;v ;wÞ.

2.1. Model equations 

The Process Study Ocean Model, or PSOM, is a three-dimen- 
sional (3D), non-hydrostat ic model (Mahadevan, 2006 ) where the 
top layer of grid cells follows the free-surface . For the discretiza- 
tion, the code uses Quadratic Upstream Interpolatio n for Convec- 
tive Kinematics (QUICK; Leonard, 1988 ), a scheme known for its 
negligible numerical diffusion and dispersio n. A description of
the model variables follows. Variables with the tilde operator rep- 
resent filtered (resolved-scale) variables and those without the 
tilde operator represent unfiltered fields. We use the words re- 
solved (or resolved-scale) and filtered interchange ably in this doc- 
ument. The unfiltered fields, in principle, contain informat ion 
across the entire range of length scales down to the Kolmogorov 
microscal e (Tennekes and Lumley, 1972 ). Only the filtered fields
are available because a discrete computational grid cannot resolve 
scales of motion finer than the grid resolution. The nonlinear ity of
the advective term in the Navier–Stokes equations, however, gives 
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rise to subgrid-sca le terms that need to be modelled to close the 
system of equations for the filtered variables.4 The model equations 
in non-dimen sional form are:

Dt ~q ¼ eF ~q � @s
q
i

@xi
ð1Þ

Dt ~uþ Ro�1 ~px þ c~q�x � f ~v þ Rodb ~w
� �

¼ eF x �
@sd

ij

@xj
; i ¼ 1 ð2Þ

Dt ~v þ Ro�1 ~py þ c~q�y þ f ~u
� �

¼ eF y �
@sd

ij

@xj
; i ¼ 2 ð3Þ

Dt ~wþ Ro�2d�1 c
d

~q�z � b~u
� �

¼ eF z �
@sd

ij

@xj
; i ¼ 3 ð4Þ

~ux þ ~vy þ Ro ~wz ¼ 0; ð5Þ

where Dt � @t þ ~u@x þ ~v@y þ Ro ~w@z is the non-dimen sional mater ial 
derivativ e operator. The variable s ~u; ~v and ~w denote the non-dimen- 
sional filtered velocity component s along the eastward (x), north- 
ward (y) and upward (z) directions, respective ly, on the earth’s 
surface. The variable ~q denotes the filtered density perturbat ion 
from the background stratification prescribed at t ¼ 0. The compo- 
nents of the Coriolis accelerat ion scaled with the earth’s angula r
velocity, X, are denoted by f ¼ 2 sin ð/Þ and b ¼ 2 cos ð/Þ where /
is the latitude. Defining U;W; L and D to be the relevant scales for 
the horizont al velocity , vertical velocity, the horizontal and vertical 
length scales, respective ly, the non-dim ensional paramete rs in the 
model are: (i) the Rossby number, Ro ¼ U=XL, where X is the angu- 
lar velocity of rotation of the earth; (ii) ratio of the non-hydrost atic 
(NH) to hydrostatic (HY) pressure variation s, c ¼ Q=P, where Q and
P are the characterist ic scales for the NH and HY component s,
respective ly; and (iii) the aspect ratio, d ¼ D=L. For the NH runs, it
is appropriate to set c ¼ d (Mahade van, 2006 ). The filtered HY com- 
ponent is denoted by ~p and the filtered, modified NH component 
(discussed below) by ~q�. Setting c ¼ 0 turns off the NH effects . By
definition, ~p satisfies ~pz þ ~qg ¼ 0, where g is the acceleration due 
to gravity. Scaling the vertical vorticity equation and assuming a
balance between the advect ion and divergence terms yields 
W ¼ RodU (Mahade van, 1996 ).

The filtered forcing terms are shown on the right hand side of
(1)–(4) as eFq; eF x and so on. We assume implicitly the forcing terms 
are described completely by their filtered parts, i.e., they lack spa- 
tial structure finer than the grid resolution. The non-dimensional 
SGS density fluxes are denoted by sq

i ¼gqui � ~q~ui. We denote the 
deviatoric non-dimensional SGS momentum stress tensor as
sd

ij ¼guiuj � ~ui~uj � ð2=3Þdijesgs, where dij is the Kronecker-Del ta oper- 
ator and esgs ¼guiui � ~ui~ui is the non-dimens ional SGS kinetic en- 
ergy. By construction, sd

ij is traceless. The variable ~q� is the 
modified, filtered NH component of pressure as it includes a contri- 
bution from ð2=3Þesgs, in addition to the true NH pressure compo- 
nent. To solve for the filtered fields in (1)–(5), we must 
parameterize the three SGS fluxes and the six independen t SGS 
stresses. Knowledge of the SGS kinetic energy requires an addi- 
tional parameterization for esgs, which we do not undertake in this 
study.

2.2. Subgrid model 

Before describin g the ASM, we provide a brief discussion of the 
adaptation of the Smagorin sky model and some of its variants to
LES of 3D turbulence. Lilly, 1967 first tuned the Smagorinsky sub- 
4 Except in a Direc t Numerical Simulation (DNS) where the grid resolution is fine
enough to resolve the Kolmogorov microscale, removing the need for an SGS mode l
grid model (SM; Smagorinsky , 1963 ) for LES of homogeneous , iso- 
tropic turbulence by constraining the SGS dissipatio n to yield the 
correct magnitude and slope of energy spectra within the iner- 
tial-subr ange, in accordance with Kolmogorov scaling.5 His deriva- 
tion requires the grid-cuto ff wavenumbe r to resolve the inertial- 
subrang e. The value of the Smagorinsk y model constant Lilly derived 
is not meant to be universa l due to the assumptio ns underlyi ng his 
derivation. For instance, it is not valid for strongly anisotrop ic turbu- 
lence or when the grid resolution is too coarse to resolve the inertial 
subrang e. Germano et al. (1991) developed the Dynam ic Smagorin- 
sky model (DSM) which prescribes the subgrid model constant as
a function of space and time by relating the resolved-s cale fields fil-
tered at two different scales through the Germano identity, defined
in the same study. This dynami c evaluation of the subgrid model 
constan t enables the DSM, in principle, to exhibit negative eddy-vis- 
cosities and thus, backscatt er, or, the transfer of energy from the 
subgrid to the resolv ed scales. In practice, negative eddy-viscosi ties 
give rise to numerical instabilitie s (Lilly, 1992 ) and are usually 
clipped, effectively elimina ting backscatt er. Both DNS (Piomelli
et al., 1991 ) and field measuremen ts (Sullivan et al., 2003 ) of 3D tur- 
bulence show significant amounts of backscatter with a slightly 
stronge r forward cascade to yield a net forward (downscale) cascade 
of energy. The SM, by construct ion, permits only a downscale trans- 
fer of energy from the resolved to the subgrid scales, at every single 
grid point. When the grid scale lies within the submesos cales, where 
the flow regime is considerabl y different from 3D, isotropic turbu- 
lence, it is unclea r what are the relative fractions of grid-scale for- 
ward and inverse cascades, although simulat ions show the spectral 
flux of kinetic energy switches from an inverse to a forward cascade 
at scales O(10 km) (Capet et al., 2008b ). The DSM model has been 
used successful ly in past LES studies of oceanic flows (Ozgokmen
et al., 2009; Ozgokmen et al., 2011; Tejada-Martínez, 2009 ) with 
nearly isotropic grids. Scotti and Meneveau, 1993 ; and modified
the SM and the DSM, respect ively, for anisotrop ic grids by obtaining 
analytic al expression s for the subgrid model constant as a function 
of the grid anisotrop y, assuming the grid spacing in all three direc- 
tions resolves the inertial-su brange. Other anisotropic variants of
the DSM include the formulatio n by Cottet and Wray, 1997 based
on a leading order expansion for the Leonard term (Leonard , 1974 )
in the subgrid -scale tensor.
2.2.1. ASM 
Simulations designed to study the simultaneou s evolution of

both mesoscale meanders and submeso scale features in the ocean 
require anisotropic grids, as the vertical resolution, Dz, is much fi-
ner than the horizontal resolution, Dx (or Dy), due to the large as- 
pect ratio of the domains, with horizontal scales much larger than 
the vertical scales (Capet et al., 2008c; Klein et al., 2008; Mahad- 
evan, 2006 ). Roman et al., 2010 developed an anisotropic Smago- 
rinsky model (ASM) that derives from past work (Kamenkovich,
1977; Wajsowi cz, 1993; Miles, 1994 ) and is designed for grids 
where Dx� Dz. Owing to the highly anisotropic grids and coarse 
resolutions6 in our simulat ions, we use the SGS model designed by
Roman et al., 2010 . ASM does not require the grid resolutio n to be- 
long in the inertial subrang e, but this generality comes at a cost,
namely, the lack of analytic al expressio ns relating the subgrid model 
constan ts to the grid anisotrop y. A short description of the formula -
tion of the ASM follows .

Let us denote the dimensional eddy-viscosi ty tensor by Kij,
which is assumed to be symmetric. ASM reduces the six indepen- 
dent components to three: K11 ¼ K12 ¼ K22;K13 ¼ K23 and K33. In
5 Corrsin, 1951 advanced equivalent arguments for an universal form of the passive 
scalar spectrum in isotropic turbule nce.

6 Insufficient to resolve the inertial subrange 



Table 1
Description of runs using constant lateral SGS viscosities (Kx ;Ky) and an analytically 
prescribed vertical SGS viscosit y (Kz). The prescribed Kz profile is a hyperbolic 
tangent.

Run Kx ¼ Ky (m2 s�1) Kz (m2s �1) Interior: 1� 10�5

KX1KZ1 1 Ekman layer: 1� 10�3

KX1KZ4 1 Ekman layer: 4� 10�3

KX5KZ1 5 Ekman layer: 1� 10�3

KX5KZ4 5 Ekman layer: 4� 10�3

7 This implies Kv would assume the background value everywhere in the domain in
the absence of surface winds.
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the discussion below, we use upper-cas e symbols for dimensional 
variables. The three independen t components are given by:

K11 ¼ ðc1DxÞ2jeShj; K13 ¼ ðc2DzÞ2jeSv j; K33 ¼ ðc3DzÞ2jeSrj; ð6Þ

where the dimens ional, filtered strain rates eSh; eSv and eSr are defined
as follows:

jeShj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 eS2

11 þ eS2
22 þ eS2

12

� �r
ð7Þ

jeSv j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4eS2

13 þ 4eS2
23

q
ð8Þ

jeSrj ¼
ffiffiffiffiffiffiffiffiffiffi
2eS2

33

q
: ð9Þ

In (7)–(9) the filtered strain-rat e tensor eSij ¼ 0:5 @ eUi=@eXj þ @ eUj=@eXi

� �
where eUi is the dimension al ith com- 

ponent of velocity and eXi is the dimens ional ith coordinat e. The 
stress divergence terms in the dimens ional horizontal momentu m
equations are (Roman et al., 2010 ),

@

@eX1

2Kh
eSi1

� �
þ @

@eX2

2Kh
eSi2

� �
þ @

@eX3

2Kv
eSi3

� �
; i ¼ 1;2; ð10Þ

where Kh ¼ K11 and Kv ¼ K13. The stress divergen ce terms in the 
dimensio nal vertical momentum equation are,

@

@eX1

2Kv
eSi1

� �
þ @

@eX2

2Kv
eSi2

� �
þ @

@eX3

2Kr
eSi3

� �
; i ¼ 3; ð11Þ

where Kr ¼ K11 � 2K13 þ 2K33 (Roman et al., 2010 ). The eddy-dif fu- 
sivities, Kq

i , are compute d assuming a constant eddy Prandtl num- 
ber, Pre, such that the horizont al component s Kq

1 ¼ Kq
2 ¼ Pr�1

e Kh

and the vertical component Kq
3 ¼ Pr�1

e Kv . The consta nt- Pre assump-
tion is one of convenience and lacks a rigorous basis (Moeng and 
Wyngaa rd, 1988 ) but is invoked frequen tly in LES studies due to
its simplicity (Harcourt and D’Asaro, 2008; Sulliva n et al., 2007;
Taylor and Ferrari, 2010 ). Roman et al., 2010 use Pre ¼ 0:5, while 
some LES studies use a value of 1 (Harcourt and D’Asaro, 2008; Tay- 
lor and Ferrari, 2010 ). We will assume Pre ¼ 1 in all our simulati ons.
For the value of Ro used in our simulati ons (discussed in Section 3)
the third term in (11) scales as an order of magnit ude smaller than 
the other two terms in the equation. Hence, to simplify our subgrid 
paramete r space, we further impose c2 ¼ c3 in all our runs, that 
leaves two free SGS param eters, c1 and c2

We modify the ASM slightly in our simulations . In the formula- 
tion by Roman et al., 2010 there is no dependence on the Richard- 
son number, Ri, in (6) which implies vertical mixing (of momentum 
or density) regardless of the underlyin g stratification. To suppress 
such unphysical mixing Ozgokmen et al., 2007 multiplied the ver- 
tical components of the eddy-viscosity and/or eddy-diffusivit y by
the following function (Ozgokmen et al., 2007 ):

f ðRiÞ ¼
1 Ri < 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ri
Ric

q
0 6 Ri 6 Ric ¼ 0:25

0 Ri > Ric:

8><>: ð12Þ

The function in (12) turns off the vertical mixing when Ri exceeds a
critical value, Ric ¼ 0:25, above which the stratification is consid -
ered too strong to sustain continuous turbule nce. The correction 
factor in (12) is empiri cal and neglects patchy, intermitte nt mixing 
for Ric > 0:25 (Ohya et al., 2008 ). Ozgokmen et al., 2007 found the 
Ri-based correcti on works best when it is applied only to the verti- 
cal SGS diffusivity but not to the vertical SGS viscosity. Thus, we re- 
strict the use of the correction factor in (12) to Kq. The threshold 
value of Ric ¼ 0:25 is perhaps more suitable for high-res olution 
LES capable of resolving Kelvin–Helmholt z instabilities. We con- 
firmed increasing Ric to 1 does not alter the results significantly
as the onset of submeso scale instabil ities causes Ri to attain O(1)
values rapidly after 5–6 days in the simulation .
2.2.2. Constant SGS lateral viscosities 
Table 1 shows the four different combinations of constant lat- 

eral SGS viscosities (Kx;Ky) and analytically prescribed vertical 
SGS viscosity (Kv ) profiles used in our simulations. These runs sup- 
plement those with the ASM and serve to make clearer the influ-
ence of SGS dissipatio n on the resolved-sca le statistics.

In simulations with the ASM we found the lateral viscosity attains 
localized maximum values �5 m2 s�1 along the frontal meanders 
whereas its zonally-ave raged mean values are �1 m2 s�1 near the 
surface. Accordingly , the values Kx ¼ 1 m2 s�1 and Kx ¼ 5 m2 s�1

are meant to mimic the ASM crudely in its mean and instantaneous 
lateral dissipation characteristics. For each of these Kx values we use 
two vertical SGS viscosity (Kv ) profiles varying smoothly from 
10�5 m2 s�1 in the interior to either 10�3 m2 s�1 or 4� 10�3 m2 s�1

within the Ekman layer (depth= ð0:4=f Þðsx=q0Þ
1=2; sx �

Zonal wind stress).7 Our choice of Kv within the Ekman layer is also 
guided partly by the correspondi ng values predicte d by the ASM.
Within the set of constant Kx simulations , the four combination s in Ta-
ble 1 allow us to isolate the effects of horizontal and vertical contribu- 
tions to the SGS dissipation .
3. Numerical experiment s

In Table 2 we list the physical parameters in our numerica l sim- 
ulations which follow those in the study by Mahadev an (2006).
3.1. Lateral grid resolution 

The lateral grid resolution resolves the most unstable mode pre- 
dicted by Stone’s analysis of ageostrophic baroclinic instabilities 
(Stone, 1970 ). For representat ive values of
U ¼ 0:1 m s�1; f ¼10�4 s�1 and Ri ¼ 1, his analysis estimates the 
waveleng th of the most unstable mode as ð2pU=f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1þ RiÞ=2

p
,

or 5.6 km, which is an order of magnitud e larger than Dx. The grid 
resolution is too coarse to resolve length scales associated with 
symmetr ic instability (Taylor and Ferrari, 2009, 2010 ) but vertical 
profiles of the balanced Richards on number, Rig , averaged near 
the front indicate a rapid increase to values greater than 1 after 
the onset of instabilities (� 5Tf ) implying the conditions necessary 
for symmetric instabilit y (0:25 < Rig < 0:95) are violated soon 
thereafte r. Hence, the role of symmetric instability in our simula- 
tions is likely confined to the first few inertial periods.

We show results only for Dx ¼ 500 m but confirmed simula- 
tions with Dx ¼ 750 m and Dx ¼ 1000 m reproduce the trends ob- 
served here. We do not expect our results to hold for arbitrarily 
coarse lateral grid resolutions because the grid spacing needs to re- 
solve the onset of the forward cascade reported in past studies.
Failing that, the use of an LES-based SGS model that ensures a
net forward cascade is questionable.



Table 2
Non-dimensional and dimensional simulation parameter s.

Description Symbol Value 

Non-dimensional parameters 
Aspect ratio d 10�2

Rossby number Ro 0:1
Ratio of non-hydrostatic c ¼ d
to hydrostatic pressure 

Dimensional parameters 

Time step Dt 216 s
Domain size (zonal) Lx 96 km
Domain size (meridional) Ly 192 km
Domain size (vertical) Lz 500 m
Grid resolution (zonal) Dx 500 m
Grid resolution (meridional) Dy 500 m
Grid resolution (vertical) Dz 3:6 m (near-surface)

35 m (bottom)
Westerly wind stress sx 0.1 N m�2 (amplitude)
Coriolis parameter f0 10�4 s�1

Bottom friction coefficient rbot 5� 10�4 s�1

Mixed layer depth MLD 105 m (Initial value)
Peak lateral buoyancy gradient @b=@y 0:9� 10�7 s�2 (Initial value)
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3.2. Damping of the most unstable mode for Kx ¼ 5 m2 s�1

Assuming a linear framework, a viscosity of 5 m2 s�1 will damp 
the unstable mode over a timescale 1=ðj� 5Þ2 s, where 
j ¼ 2p=ð5:6� 103Þ rad m�1. The above calculation yields a damp- 
ing timescale � 2 days which suggests a viscosity of Kx ¼ 5 m2 s�1

could influence directly the instability scale as submesosca le insta- 
bilities evolve on inertial timescales . We nevertheless include the 
simulations with Kx ¼ 5 m2 s�1 as they are necessary to quantify 
the differences between the two sets of simulations (Kx ¼ 1 m2 s�1

and Kx ¼ 5 m2 s�1). Moreove r, the above estimate omits the influ-
ence of vertical SGS mixing which, we show, has an important role 
to play.
3.3. Boundary conditions 

The boundary conditions are periodic in the zonal direction. The 
southern and northern boundaries are impermeabl e walls across 
which we impose zero advective fluxes and zero meridional gradi- 
ents of the velocity, density and, SGS fields. The topmost layer of
grid cells follow the free-surface (Mahadevan, 1996 ). The SGS 
Fig. 1. The initial potential density field is in thermal-wind balance with a westerly geost
bottom of the ML.
stresses sd
13 and sd

23 at the free-surface satisfy sx=q0 ¼ sd
13 and

sy=q0 ¼ sd
23, where sy is the meridion al surface wind-stress (zero

in this study) and q0 ¼ 1027 kg m�3 is the reference density. The 
SGS flux sq

3 at the surface is set equal to the surface density flux,
which in this study is zero due to the absence of cooling or heating 
at the surface. We model bottom friction using a linear drag,
rbotðU;VÞ, where the constant bottom friction coefficient
rbot ¼ 5� 10�4 s�1 and ðU;VÞ are the dimensio nal horizontal 
velocities.

3.4. Forcing and initial conditions 

We impose downfront, westerly (West to East, or W–E) surface- 
winds that vary sinusoida lly in the meridion al direction (Fig. 2,
bottom panel). The amplitude of the westerly wind-stress, sx, in- 
creases linearly from zero to its maximum value of 0.1 N m�2 over
a day. We prescribe a south-to-north (S–N) density gradient con- 
fined to the mixed layer and in thermal-wind balance with the 
westerly jet, as shown in Fig. 1. The top panel of Fig. 2 shows the 
initial profiles of buoyancy frequenc y, N2, and the potential den- 
sity, q, at the front. The variable N2 assumes a uniform value of
10�6 s�2 within the ML, which reaches a maximum 
� 3� 10�4 s�2 through the pycnocline and is constant at
1:5� 10�6 s�2 below the pycnocline. The middle panel in Fig. 2
shows the free-surface elevation and the meridion al variation of
the meridional buoyancy gradient, @b=@y at a depth of 50 m, where 
b ¼ �ðg=q0Þð~q� q0Þ is the buoyancy. We do not maintain a con- 
stant reservoir of available potential energy (APE) but allow the 
S–N density gradient to vary in time. The higher elevation of the 
free surface on the lighter side ensures the initial barotropic and 
baroclinic pressure gradients at the bottom of the ML are equal 
and opposite. To nudge the onset of instabilities the density front 
has an initial wiggle in the form of a sinusoidal wave whose ampli- 
tude is 100 m and wavelength is equal to the zonal extent of the 
domain.
4. Results 

4.1. Instantan eous fields: potential density and vertical velocity 

Snapshots of the near-surface density and velocity fields after 
t ¼ 20Tf (Fig. 3 and 4), where Tf ¼ 2p=f0 is one inertial period,
show the front has gone baroclinical ly unstable and develope d
meander s whose edges exhibit submesosca le features. There are 
rophic jet confined to the mixed layer. The level of no motion lies at z ¼ �105 m, the 



Fig. 2. Top panel: Initial vertical profiles of N2 (s�2) and q (kg m�3) at y ¼ 96 km. Middle panel: Initial meridional variation of the lateral buoyancy gradient, @b=@y (s�2), at a
depth of 50 m and of the free-surface elevation (in m). Bottom panel: Meridional variation of zonal wind-stress (after initial ramping up), showing a sinusoidal profile with an
amplitude of 0:1 N m�2.

Fig. 3. Snapshots of the near-surface (z ¼ �10 m) potential density field at t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period, for the constant- Kx and ASM 
simulations.
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Fig. 4. Snapshots of the near-surface (z ¼ �10 m) vertical velocity field at t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period, for the constant- Kx and ASM 
simulations.
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noticeable differences between the various runs. Among the con- 
stant-Kx runs those with Kx ¼ 1 m2 s�1 exhibit more pronounced 
meanders and sharper frontal gradients. The meandering features 
are weaker for the Kx ¼ 5 m2 s�1 simulations, due likely to the di- 
rect influence of the lateral SGS viscosity on the instability scale 
(Section 3.2). The potential density field obtained using the ASM 
is closer to those obtained with Kx ¼ 1 m2 s�1 than with 
Kx ¼ 5 m2 s�1.

The vertical velocity (Fig. 4) field from the different simulations 
shows marked differenc es of which the most prominent is the 
presence of wave-like features for most of the constant -Kx runs.
These features are most evident for Kx ¼ 1 m2 s�1 but increasing 
Kz attenuates them and in some cases (KX5KZ4) removes them 
completely. The waves appear to be highly directional with a visu- 
ally inferred zonal wavelength of 6–7 km. The zonally-ave raged 
Eulerian temporal spectra of w near the front (not shown) show 
the frequenc y of the waves lies between f and 1:5f which raises 
the possibility their intrinsic frequenc y (without the Doppler shift)
is inertial. Kunze’s analysis of near-inerti al motions near fronts 
(Kunze, 1985 ) showed the near-inertial wave field is strongly 
anisotropic and directional. His formulation , however , requires 
Ro� 1 whereas submesosca le eddies are characterized by
Ro 	 Oð1Þ (Thomas et al., 2007 ) near the frontal edges. For the pur- 
poses of this study, our interest in these waves is limited to their 
transport of kinetic energy generated near the front. The removal 
of kinetic energy near a front can either occur irreversibly via a for- 
ward cascade to smaller scales or by its transport to other regions 
of the flow. The dominance of one of these two modes of removal 
of kinetic energy over the other thus hinges on the relative 
strengths of SGS dissipatio n and turbulent transport (advective
and pressure fluxes). Experiments in the Kuroshio (D’Asaro et al.,
2011; Nagai et al., 2012 ) show upper-ocean turbulent dissipation 
near fronts is enhanced. This would imply both local destruction 
via forward cascades and transport contribute to the removal of
eddy kinetic energy. Fig. 4 suggests the strong levels of radiation 
might be an indicator of inadequate SGS dissipation. We confirm
this is indeed the case in Section 4.5 where we discuss the eddy ki- 
netic energy (EKE) budgets and their implication s for the SGS 
dissipatio n.

The signature of the potential -density field is evident in all 
cases except KX1KZ1. The vertical motions near the frontal edges 
indicate upwelling on the lighter side of the front and downwe lling 
on the denser side, suggestive of a thermally direct circulation in- 
duced by the ML eddies (Capet et al., 2008c; Mahadevan, 2006 ).
Downwe lling is stronger than upwelling and occurs in narrower 
streaks of length O(10 km) and width O(1 km). For the ASM, the 
peak negative velocities (�120 m/day) are much larger than the 
peak positive velocities (�50 m/day). This asymmetry is also pres- 
ent in simulations with Kx ¼ 1 m2 s�1 and to some extent for 
Kx ¼ 5 m2 s�1. The differenc e in the peak upwelling and downwel- 
ling velocities was also reported in previous studies (Capet et al.,
2008c; Klein et al., 2008; Mahadev an, 2006 ).

Snapshots of the near-surface SGS viscosity component, K11, at
t ¼ ð7;15;20ÞTf (Fig. 5) reveal its horizontal structure, like that of
w, is tied to that of the potential density field. The maximum values 
of K11 occur along the meander ing edges of the front characteri zed 
by large strain rates. Probability density functions of K11 and K13 at
t ¼ 20Tf reveal the former exhibits strong positive skewness while 
the latter is skewed (positively) to a much smaller extent (Fig. 6). A
vertical profile of K11 near the front (Fig. 7) shows its largest values 
are Oð1Þm2 s�1, near the surface. A similar profile for K13 (Fig. 7)
shows it is Oð10�2Þm2 s�1 near the surface and the base of the 
ML, and Oð10�3Þm2 s�1 within the middle of the ML. The high 
mean values of K13 near the base of the mixed layer are associate d
with zonal streaks of alternating positive and negative shear. The 
positive and negative shear cancel each other upon averaging zon- 
ally but contribute to K13 (Eq. 6).

4.2. Spectra and spectral fluxes

Near-sur face zonal spectra of u and q for different SGS 
constant s at t ¼ 15Tf (Fig. 8, top panel) exhibit a slope of �2



Fig. 5. Near-surface (z ¼ �10 m) evolution of K11.

Fig. 6. Probability density function (PDF) of fluctuating K11 and 102 � K13 at
z ¼ �10 m and t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. Each 
PDF is constructed from a horizontal slice of data spanning the entire zonal extent 
of the domain and a meridional distance of 6 km centered at y ¼ yf ¼ 96 km, the 
initial location of the front. The areal means of K13 and K11 are subtracted out.

Fig. 7. Vertical profiles of K11 and K13 at t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is
one inertial period. The profiles are averaged zonally, meridionally and temporally.
The meridional averaging window spans 6 km centered at y ¼ yf ¼ 96 km, the 
initial location of the front. The temporal averaging occurs over one inertial period 
centered at t ¼ 20Tf . The circles indicate the vertical grid levels.
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approximat ely over a wavenumber range that varies with the 
value of the subgrid constant. For ðc1; c2Þ ¼ ð0:25; 0:25Þ, this range 
exists for 3� 10�4 rad m�1

< jx < 10�3 rad m�1, or length scales 
6–20 km (2p=jx). A slope of �2 at intermediate scales is consistent 
with previous numerical studies (Capet et al., 2008b; Klein et al.,
2008). The higher values of the SGS constants lead to increasingly 
steeper slopes at the high wavenumber s and a narrowing of the 
wavenum ber range where the spectral slope is �2, a consequence 
of increased SGS dissipatio n. In none of the cases does the spectral 
slope of �2 extend all the way to the grid cut-off wavenumber . For 
that to be possible, we would require zero numerical mixing and 
an SGS model that achieves strict scale-separa tion in spectral 
space, i.e., it contaminat es no scale larger than the grid cut-off.

We infer the direction of energy flux from the spectral flux,
PðjxÞ, defined as PðjxÞ ¼ �

R jmax

jx
cu� 
 dðu 
 rÞu, where ^ denotes a

Fourier transform and u� denotes the complex conjugate of the 
three-dim ensional velocity vector, u. The boundary condition 
PðjmaxÞ ¼ 0 is implicit in the definition of PðjxÞ. At the large 
scales, the spectral flux is negative implying an inverse cascade 
of energy (Fig. 8, bottom panel). It is positive for 
jx > 6� 10�4 rad m�1 (<10.5 km), indicative of a downscal e trans- 
fer of energy at those scales. Capet et al., 2008b found the transi- 
tion from an inverse to a forward cascade occurs at
jx � 3� 10�4 rad m�1. It is essential consistency check that we re- 
solve the onset of the forward cascade when using an SGS model 
that effects a forward cascade.

Unlike the velocity spectra the spectral flux changes appreciably 
with varying SGS constant s, exhibiting a spread of nearly 50% at
the large scales (low jx). Higher SGS dissipatio n results in a de- 
crease in the strengths of both the inverse and the forward cas- 
cades. For instance, both the inverse and forward spectral fluxes
for ðc1; c2Þ ¼ ð0:25; 0:50Þ are negligible.

The corresponding spectra for Kx ¼ 1 m2 s�1 (Fig. 9) are similar 
to those for the ASM in magnitude and slope. The simulatio ns with 
Kx ¼ 5 m2 s�1 exhibit a marked decrease in spectral levels, poten- 
tially due to the high value of lateral viscosity (Section 3.2). The 
spectral flux for KX1KZ1 and KX1KZ4 (Fig. 9) shows an inverse cas- 
cade at the larger scales and a forward cascade for 
jx > 6� 10�4 rad m�1. For Kx ¼ 5 m2 s�1 both the inverse and for- 
ward cascades are diminished strongly and the spectral flux is
nearly indisting uishable from zero. The inverse cascade facilitate s
the spatial growth of eddies that result originally from a geo- 
strophic baroclinic instability within the mixed layer. Weak in- 
verse cascades thus limit the spatial scale of the eddies, as is
evident for KX5KZ1 and KX5KZ4 (Fig. 3). Interestingly, the spectral 
magnitud es and spectral fluxes are higher upon increasing the ver- 
tical SGS viscosity within the ML. This trend is clearer in the simu- 
lations with Kx ¼ 1 m2 s�1. We presently lack a definitive
explanat ion for this result but speculate the increase in the 
strength of the inverse cascade might be related to the effects of



Fig. 8. Top panel: Log–log plot showing near-surface spectra (at z ¼ �4:5 m) plotted versus zonal wavenumber, jx (rad m�1), at y ¼ 96 km and t ¼ 15Tf , where 
Tf ¼ 2p=f0 ¼ 17:5hours is one inertial period. The dashed line has a slope of �2. Top left: Zonal velocity spectra, Top right: Potential density spectra. Bottom panel: Spectral 
flux, PðjÞ (m2 s�3) plotted versus zonal wavenumber in a linear-log plot. The different curves denote different combinations of SGS constants. The spectral flux for 
c1 ¼ 0:25; c2 ¼ 0:50 (dash-dot line in blue) has much smaller magnitudes and is nearly coincident with the zero line. The spectra and spectral fluxes are averages over one 
inertial period centered at t ¼ 15Tf . A wavenumber of 10�3 rad m�1 corresponds to a length scale of 2p=10�3 m, or 6:28 km. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article)

Fig. 9. Similar to Fig. 8 but for an SGS model with constant lateral SGS viscosities 
and an analytically prescribed vertical SGS viscosity.
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friction on the triadic interactions, as described by the nonlinear 
advection term in spectral space. The change in the magnitude of
the inverse cascade at the largest scales could possibly be a conse- 
quence of ‘‘distant’’ triadic interactions 8 playing a non-negligibl e
role in determining the magnitud e of the inverse cascade. The trends 
exhibited by the forward cascade accord with our intuition that a
higher SGS dissipati on must yield a greater downscale flux of energy 
close to the grid cutoff. The above discuss ion shows the combined ef- 
8 Interactions betwe en modes far-removed in wavenumb er space 
fects of horizontal and vertical SGS mixing can be subtle even in an
SGS model as bare as one using constant lateral SGS viscosities and 
an analytic ally prescribed vertical SGS viscosity. We conclude this 
section by noting the spectra and the spectral fluxes can exhibit con- 
siderable sensitivity to the horizontal and vertical SGS parameteri za- 
tions even at scales considerabl y larger than the grid-cutoff .
Furtherm ore, this sensitivi ty cannot always be explained trivially 
by merely comparing the lateral SGS viscos ities.

4.3. Extraction of APE 

Vertical profiles of m, the ratio of the isopycnal slope, �hbyi=hbzi,
to the slope along which fluid parcels exchange buoyancy in the y-z
plane, hv 0b0i=hb0w0i, illustrate how efficiently the APE residing in
the front is converted to kinetic energy (Fig. 10). The variables by

and bz denote the meridional and vertical buoyancy gradients,
respectivel y. Analytical arguments predict maximum extraction 
of APE occurs when m ¼ 2 (Eady, 1949; Haine and Marshall,
1998). In simulatio ns of an unforced front, Fox-Kemp er et al.,
2008 found m settles to a value between one and two after six to
seven inertial periods (assuming a Coriolis parameter of
10�4 rad s�1). For fronts forced by downfront winds, simulatio ns
show the buoyancy fluxes eventual ly become aligned with the iso- 
pycnals under quasi-equili brium conditions, where the destratifi-
cation due to Ekman advection of heavier over lighter fluid
counters the restratification induced by the slumping of isopycnal s
(Mahadev an et al., 2010 ).

The depths over which the APE is extracted efficiently and the 
orientati on of the buoyancy fluxes vary in the five cases. For the 
ASM, there is an initial Eady phase where m � 2 over bulk of the 
mixed layer except near the surface. At later times the buoyancy 
fluxes are nearly aligned with the isopycnals and m ¼ 1. The sim- 
ulations with Kx ¼ 1 m2 s�1 yield m ¼ 2 but at different times 
and over a range of depths smaller than does the ASM. For 
Kx ¼ 5 m2 s�1 m attains the value 2 much later than for ASM and 
Kx ¼ 1 m2 s�1. While the efficiency of APE extraction is sensitive 



Fig. 10. Vertical profiles of m, the ratio of the isopycnal slope, �hbyi=hbzi, to hb0w0i=hb0v 0i, the slope along which fluid parcels exchange buoyancy in the y-z plane, at
t ¼ ð10;14;20ÞTf where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. We have averaged the profiles zonally, temporally over one inertial period and meridionally over a
distance 2 km centered at y ¼ yf . For the most efficient extraction of APE, m ¼ 2 (Eady, 1949; Haine and Marshall, 1998 ). The circles on the black curve indicate the vertical 
grid levels.
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to both horizontal and vertical SGS mixing, it does not differ greatly 
between the simulatio ns with Kx ¼ 1 m2 s�1 and the ASM. The sim- 
ulations with Kx ¼ 5 m2 s�1 show considerabl y different trends,
due likely to the adverse influence of the lateral SGS viscosity 
(Section 3.2).

4.4. SGS dissipation of buoyancy variance 

The orientation of the buoyancy fluxes has implication s for the 
SGS dissipation of the resolved-scale buoyancy fluctuations, v.
Whenever Ri exceeds Ric ¼ 0:25 we turn off the vertical SGS diffu- 
sivity (see Section 2.2.1) and consequentl y, v. From the equation 
for the resolved-sca le buoyancy variance it follows isopycnal fluxes
do not generate any buoyancy fluctuations. In the absence of exter- 
nal heating or cooling, cross-isopyc nal buoyancy fluxes are the pri- 
mary source of buoyancy fluctuations in a domain-averag ed sense,
assuming the divergen ce of advective and pressure fluxes integrate 
to zero (page 434; Vallis, 2006 ). Under quasi-eq uilibrium condi- 
tions we then expect production of buoyancy variance to balance 
SGS dissipation of the same, in a domain-ave raged sense. Thus, iso- 
pycnal buoyancy fluxes, as observed at later times in some simula- 
tions, are not wholly inconsistent with near-zero SGS dissipation.
We confirmed turning off the vertical SGS diffusivity yields near- 
zero values for v implying the horizontal gradients of buoyancy 
contribute minimally to v.

4.5. Eddy kinetic energy budget and SGS dissipation 

This section examines the various terms in the zonally-ave raged 
eddy kinetic energy (EKE) budget and explores the balance be- 
tween them. We relate, where possible, magnitudes of the domi- 
nant production term in the EKE budget to existing scaling 
estimates in the literature.

The non-dimensi onal EKE budget is given by,
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; ð13Þ
where the angled bracket s denote zonal averaging and the primed 
variable s are fluctuations from the correspondi ng zonal averages.
For instance, u0i is the deviation of ~ui from its zonal average, h~uii.
The terms in (13) describe the different gain and loss terms that 
produce or destroy the kinetic energy of eddies spanning the entire 
range of scales resolved in our simulation. Both the resolved- scale 
and SGS kinetic energy contribute to the advection term but our 
plots do not show the subgrid contrib ution as we lack a parameter -
ization for esgs.

Anisotrop ic Smagorinsky model . The near-surface resolved- 
scale eddy kinetic energy (EKE) budget (Fig. 11, left panel) shows 
�sgs 	 Oð10�6Þm2 s�3 and is balanced approximately by a geo- 
strophic shear production. This balance is reminiscent of a tradi- 
tional shear-drive n Monin–Obukhov (MO) layer. The other terms 
in the budget are much smaller in comparison. MO-scaling pre- 
scribes u� and z as the appropriate velocity and length scales with- 
in the inertial surface-layer where u� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sx=q0

p
is the friction 

velocity. Estimating �sgs 	 u3
�=z, where u� ¼ 0:01 m s�1 (for

sx ¼ 0:1 N m�2) and z 	 Oð1Þ m we obtain �sgs 	 Oð10�6Þm2 s�3,
which is in reasonable agreement with the near-surface values.
Although the dominant production terms appear to scale on the 
MO variables u� and z within this near-surface layer, it is different 



Fig. 11. Left: EKE budget with zonal, meridional (near the front) and temporal (over
one inertial period) averaging, obtained using the ASM, for �100 m < z < 0 m at
t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. Right: the budget 
terms for �160 m < z < �20 m. The meridional averaging is performed over 6 km
centered at the front. The range on the x-axis is different in the two plots. The circles 
on the lateral pressure transport profile indicate the vertical grid levels.
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from the traditional MO layer because the surface buoyancy flux is
zero, which should theoreticall y yield an infinitely deep MO layer.
The finite depth of this MO-like layer even in the absence of surface 
buoyancy fluxes is due to Ekman advection by downfront winds, as
we show later in this section.

Deeper down in the ML (�100 m < z < �20 m), the EKE budget 
is buoyancy- driven and exhibits a more complex balance (Fig. 11,
right panel). The dominant term is the vertical buoyancy flux,
hb0w0i, whose positive sign is consistent with the notion of submes- 
oscale eddies restratifying the flow by converting APE to kinetic 
energy (Fox-Kemper et al., 2008 ). The vertical buoyancy flux is bal- 
anced partially by a combination of vertical pressure transport, SGS 
dissipation and advection. The sum of all terms but the advection 
of SGS EKE on the right side of (13) is smaller than the dominant 
term in the budget but is not negligible. The SGS dissipation is
smaller than the dominan t production term but is of the same or- 
der of magnitude. Vertical pressure transport dominates lateral 
pressure transport and is the dominant loss term for 
�100 m < z < �30 m. The relative proportio ns of EKE destroyed 
locally by the subgrid model and radiated away by pressure trans- 
port depend on the subgrid constant. Increasing the subgrid con- 
stant enhances the fraction of EKE destroyed locally while 
decreasing the same causes more of the EKE to be radiated away.

We now attempt to justify the magnitude of the dominant pro- 
duction term at depths �100 m < z < �20 m. We begin by noting 
the EKE budget in Fig. 11 bears qualitativ e resemblanc e to a canon- 
ical mixed layer with no front, forced by a combination of surface 
winds and cooling. In such a canonica l mixed layer, under quasi- 
equilibrium conditions there exist a shear-drive n MO layer and a
buoyancy-d riven layer at depths greater than the MO length scale.
The relative depth of these two layers will depend on the relative 
strengths of wind forcing and surface cooling. Our simulatio ns
have zero surface buoyant forcing, yet the shear-driven layer has 
a finite depth. A possible explanation is the role played by the ‘‘Ek- 
man Buoyancy Flux’’ (EBF; Thomas and Taylor, 2010 ), an effective 
buoyancy flux due to Ekman advection of heavier over lighter fluid
by the downfront winds. The EBF is defined as:

EBF ¼ sx

q0f0
hjS2ji; ð14Þ

where S2 ¼ �by. Substitutin g representat ive values sx ¼ 0:1 N m�2

and hjS2ji ¼ 0:6� 10�7 s�2 in (14), we obtain EBF ¼ 0:58� 10�7

m2 s�3. Scalin g the a geostro phic shear production as u3
�=z (from
MO scaling) we can determine an effective MO length scale,
LMO;eff 	 u3

�=EBF, by replacing the surface buoyancy flux in the tradi- 
tional definition of LMO with the EBF. Substitutin g values, we obtain 
LMO;eff ¼ 17:2 m, which is consistent with Fig. 11. Our estimate of EBF 
scales hb0w0i reasonabl y within the ML at depths greater than LMO;eff .
To summar ize, LMO;eff is similar to the traditio nal MO length scale to
the extent it determines whether the EKE budget is dominated by
shear (ageostrophic shear) or buoyancy (due to restratification by
eddies). For the magnitud es of sx and hS2i consider ed here, hS2i—
throug h the EBF—sets the depth of the layer in which the dominant 
terms in the EKE budget obey MO scaling; it does not influence
explic itly the magnitud es of these terms within this layer as they 
can be explained using the MO variables u� and z. The situation is dif- 
ferent in the region below the MO-like layer where the EKE budget is
domin ated by the buoyancy flux, whose magnit ude depends explic- 
itly on the EBF and hence, on hS2i.

As the above scaling arguments hold only for quasi-equili brium 
condition s, what follows is an evaluation of the relative strengths 
of: (i) destratification by Ekman advection; and (ii) restratification 
by ML instabilit ies, within the framework put forth by Mahadevan
et al., 2010 .

Mahadev an et al., 2010 introduced a non-dimensi onal parame- 
ter, r � jw=wej ¼ sx=ð0:06qðMLDÞ2hbyiÞjt¼0, where w is the overturn- 
ing stream function, we is the eddy stream function and by ¼ @b=@y
is the meridion al buoyancy gradient. The overturning stream func- 
tion is defined as, w ¼ �

R z
0 hVidz ¼

R y
0 hWidy, where V and W de-

note dimensional meridional and vertical velocities, respectively .
The eddy stream function is defined as follows:

we ¼ a
�ahv 0b0ihbzi þ a�1hw0b0ihbyi

hbyi2 þ a2hbzi2

 !
; a� 1: ð15Þ

The above form for we (Plumb and Ferrari, 2005; Cerovec ki et al.,
2009) generalizes earlier definitions to accomm odate situations 
where by or bz become negligib ly small. In submesoscal e-resolving 
simulati ons of forced fronts Mahade van et al., 2010 showed (15)
successf ully paramete rizes bulk of the adiabat ic buoyancy flux
due to restratification within the ML (Mahadevan et al., 2010 ).

We choose a ¼ 10�3 following Mahadevan et al., 2010 , who 
found (15) is insensitive to a over a range 10�2–10�4. The angled 
brackets hi denote zonal averaging. The parameter r is an indicator 
of the competition between destratification induced by down-front 
winds and restratification by the mixed layer eddies. High values of
r imply the down-front winds are strong enough to prevent a net 
relaxation of the front by the mixed layer eddies. Low values imply 
downfront winds too weak to prevent net restratification by the 
ML eddies. For r close to unity, presumably , the two tendencies bal- 
ance each other resulting in an equilibrium . Using the initial values 
of H and by, we estimate r ¼ 1:6. The peak magnitud es of w and we

(Fig. 12) are approximately equal. For the ASM, the time-evolut ion 
(Fig. 13) of w and we (Eq. 15) averaged over the eddying region 
(boxed region in Fig. 12) shows r first attains unity after 
approximat ely 15 inertial periods and continues to vary thereafte r
between 0.7 and 1 till the end of the simulation. Thus, invoking 
quasi-eq uilibrium in the scaling arguments above is a reason- 
able approximation . The wiggles in w are damped inertial 
oscillatio ns. Within a couple of inertial periods, w increases
rapidly to values close to 1 and eventual ly approach es
jwwindj � sx=ðq0f0Þ ¼ 0:97 m2 s�1 (Mahadevan et al., 2010 ). For 
comparis on we also plot the time evolution of the eddy stream- 
function paramete rization by Fox-Kemper et al. (2008) (Fig. 13)
which increases initially as the ML deepens due to wind-driven 
mixing and by stays relatively constant. After the onset of instabil- 
ities (� 5Tf ) both by and MLD decrease as the ML shallows due to
restratification by the ML eddies, which results in a continual 



Fig. 12. ASM: Vertical sections of the magnitudes of the overturning stream 
function, w, and the eddy stream function from (15), we , at t ¼ 15Tf , where 
Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. Solid lines are isopycnals. The box in
dashed lines indicates the averaging region for Fig. 13.
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decrease in the magnitude of we prescribed by the Fox-Kemper
et al. (2008) parameterization .

We remark briefly on a derivation by Thomas and Taylor (2010)
that shows the sum of geostrophic shear and the buoyancy flux
scales on the EBF, in conditions favorable to symmetric instabilit y.
In our simulations the geostrophic shear is negligible by t ¼ 20Tf

and the buoyancy flux does scales on the EBF, as noted previousl y.
The agreement of our results with their scaling, however, is prob- 
ably incidental. The derivation by Thomas and Taylor (2010) does
not cover baroclinic instability, the primary instability mechanism 
in our simulations and our simulations are too coarse to resolve 
symmetric instability. Our simulatio ns suggest a mixed-lay er front 
forced with downfront winds (but no buoyancy) has some 
Fig. 13. Evolution of the magnitudes of the spatially averaged overturning stream functio
scaled by Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. The w and we fields are
obtained using the formulations by: (i) Cerovecki et al., 2009 (thick black solid line; Eq. 15
wiggles in w are inertial oscillations and the equilibrium values of w tend towards jwwind

where the zonally-averaged potential density is greater than its surface value by Dq
parameterization we use local values of by (at each y and z) and the MLD (at each y) wi
similarities to a mixed layer without fronts forced by winds and 
buoyancy if we think of the EBF as crudely equivalent to a surface 
buoyancy flux. Within this context, the scaling of the buoyancy flux
on the EBF at depths below the MO-like layer is less surprisin g.
Exploring this issue further will require much higher resolution 
(O(10) grid points) within the shear-drive n (MO-like) layer, a task 
beyond the scope of the present study.

Kx ¼ 1 m2 s�1. We focus only on depths greater than 20 m as the 
EKE budgets at shallower depths are similar for the constant- Kx

and the ASM simulations . The reason for this similarity near the 
surface is the boundary condition sd

13 ¼ sx=q0 at the free-surface 
(Section 3.3) which is imposed identicall y for all SGS models. This 
forces the SGS dissipatio n to balance a geostrophic shear produc- 
tion in the MO-like layer. Below 20 m, (Figs. 14, left panel) the nat- 
ure of balance in the EKE budget differs considerably from that for 
the ASM (Fig. 11). The buoyancy flux remains the dominant gain 
term for KXKZ1 and scales approximately with the EBF. A similar 
scaling is observed in KX1KZ4 but both buoyancy flux and lateral 
pressure transport are significant gain terms. The EKE balance is
also different in the two cases. In KX1KZ1 the buoyancy flux is off- 
set almost completely by pressure transport while the balance in
KX1KZ4 includes these two terms as well as a geostrophic shear.
The compara ble magnitud es of a geostrophic shear and buoyancy 
flux in KX1KZ4 make it harder to separate the ML into shear-drive n
and buoyancy-driven layers. The SGS dissipatio n in both simula- 
tions is too low and plays a negligible role in the EKE balance. Re- 
cent experimental studies in the Kuroshio (D’Asaro et al., 2011;
Nagai et al., 2012 ) show the irreversibl e destruction of kinetic en- 
ergy is nearly equal to the EBF, in the presence of downfront winds.
We do not yet understand fully the precise level of partitioning be- 
tween local destruction and radiation as routes to removal of EKE 
generate d near the front. Nevertheless, it is reasonable to demand 
the SGS dissipatio n be at least of the same order of magnitude as
the leading terms in the EKE balance, near the front. Hence, quali- 
tatively, the EKE budgets for Kx ¼ 1 are unrealisti c as they predict 
n (blue solid line), w, and the eddy stream function (black solid lines), we , with time 
 averaged over the eddying region indicated by a dashed box in Fig. 12. We plot we

); and (ii) we ¼ 0:06ðMLDÞ2by=f0 (thin black solid line; Fox-Kemper et al., 2008 ). The 
j � sx=ðq0f0Þ ¼ 0:97 m2 s�1. We estimate MLD, the mixed layer depth, as the depth 
¼ 0:01 kg m�3 (Brainerd and Gregg, 1995 ). In using the Fox-Kemper et al., 2008 
thin the eddying region before averaging we over the same.



Fig. 14. EKE budgets for the non-ASM runs after zonal, meridional (near the front) and temporal (over one inertial period) averaging at t ¼ 20Tf , where 
Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. The meridional averaging is performed over 6 km centered at the front. The circles on the black curves indicate the vertical 
grid levels. The near-surface balance in all four cases (not shown) is largely between a geostrophic shear and SGS dissipation.
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radiation of EKE as the only available option for the removal of ki- 
netic energy, which is consistent with the presence of the waves 
seen earlier in Fig. 4.

The time evolution of ðw;weÞ for KX1KZ1 and KX1KZ4 are simi- 
lar until t ¼ 15Tf when r � 1. Subsequentl y, it exhibits wider 
excursions for KX1KZ4 but stays below 1 for the rest of the simu- 
lation. For KX1KZ1 r � 1 between t ¼ 15Tf and t ¼ 20Tf but de- 
creases slightly towards the end of the simulation. In both 
KX1KZ1 and KX1KZ4, we based on the formulation by Cerovecki
et al., 2009 starts to depart from zero at t ¼ 5Tf which coincides 
with the onset of ML instabilit ies.

Kx ¼ 5 m2 s�1. The important gain terms in the EKE budget 
(Fig. 14) are buoyancy flux and lateral pressure transport. The 
buoyancy flux is smaller for KX5KZ1 than for any of the other sim- 
ulations and does not appear to scale on the EBF. The reduced 
buoyancy flux is consistent with weaker restratification, a conse- 
quence of the inefficient conversio n of APE to kinetic energy 
(Fig. 10). The SGS dissipatio n is higher in KX5KZ4 than in KX5KZ1 
due to the increased vertical SGS viscosity . The evolution of we

(thick black line, Fig. 13) shows the onset of instabilities is quicker 
in KX5KZ4 despite the higher SGS dissipatio n. Thus, a fuller appre- 
ciation of the effect of an SGS model on the resolved scales must 
consider both the horizontal and vertical SGS paramete rizations.
This is true especiall y when the contribution of the vertical gradi- 
ents to �sgs dominate s that from the lateral gradients, as in the 
present simulations (plots not shown). The value of r never attains 
values smaller than 1 for KX5KZ1 during the entire course of the 
simulation. We expect this given the highly inefficient extraction 
of APE which in turn, inhibits the rate of ML restratification and 
the growth of we (Eq. 15).

4.6. Implications of the EKE budget analysis for the SGS dissipation 

The level of SGS dissipation in the EKE budgets is crucial to the 
ultimate fate of kinetic energy near a front. Too low a value of SGS 
dissipatio n yields unrealistic EKE budgets with a negligible fraction 
of the EKE destroyed locally near the front. None of the cases tested 
here exhibit the opposite trend, namely, excessive local destruction 
with negligible transport. To return to the question posed in the 
introduct ory section regarding the appropriate level of SGS dissipa- 
tion, we recommend a level of SGS dissipation that is of the same 
order as the leading terms in the EKE budget. Since the SGS 
dissipatio n near the surface is relatively robust to changes in the 
underlyin g SGS model, our recomme ndation is targeted at the 
buoyancy- driven layer where, for quasi-equili brium condition s,
the buoyancy flux scales on the EBF. Thus, an acceptable level of
SGS dissipatio n in simulatio ns where r does not differ too greatly 
from 1 should be of the same order of magnitude as the EBF. This 
estimate is useful inasmuch as the EBF can be computed easily using
the wind stress and the large-scale lateral buoyancy gradient.
4.7. Skewness of j@b=@yj

The probability density function (PDF) of j@b=@yj (Fig. 15) at
approximat ely half the MLD reveals the various PDFs develop a
negative skewness at later times in the simulatio n, in some cases 
(ASM) more prominently than others (KX1KZ4). Vertical profiles
of the skewness (Fig. 16) near the front at t ¼ 20Tf show the 
negative values occur everywhere within the ML for all cases ex- 
cept KX1KZ4. One of the factors that determine the shape of the 
pdf of the lateral density gradient is the strength of frontogenesis 
by the underlying mesoscale strain field. A comparison of
vertical profiles of Q 
 rhq near the front (Fig. 17), where 
Q ¼ � @xu@xqþ @xv@yq; @yu@xqþ @yv@yq

� �
is the ‘‘Q-vector ’’ (Sand-

ers and Hoskins, 1990 ), shows the largest values occur with the 
ASM while Kx ¼ 5 m2 s�1 yields the lowest values. Stronger fronto- 
genesis implies greater amplification of the initial (negative) lateral 
buoyancy gradient which could potentially contribute to the nega- 
tive skewnes s of its PDF. It is worthwhile to pursue the sign of the 



Fig. 15. Probability density function (PDF) of 107 � @b=@y at z ¼ �50 m for t ¼ 10Tf ; t ¼ 14Tf and t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. Each PDF is
constructed from a horizontal slice of data spanning the entire zonal extent of the domain and a meridional distance of 6 km centered at y ¼ yf . The PDFs are further averaged 
in time over one inertial period centered at the time of the snapshot.

Fig. 16. Vertical profiles of: (i) the skewness of @b=@y; and (ii) the meridional buoyancy flux, at t ¼ 20Tf , where Tf ¼ 2p=f0 ¼ 17:5 hours is one inertial period. The profiles are 
averaged zonally, meridionally and temporally. The meridional averaging is performed across 6 km centered at y ¼ yf ¼ 96 km, the initial location of the front. The time- 
averaging window spans one inertial period centered at t ¼ 20Tf . The circles on the black curve indicate the vertical grid levels.
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skewness further using a simple conceptual model (Thoroddsen
and Atta, 1992 ), a description of which follows.

Consider a blob of positive buoyancy with negatively buoyant 
fluid beneath and above it. The buoyancy gradient immediately be- 
neath the blob is positive and that above it is negative. In a stably 
stratified flow hb0w0i < 0 and it is more likely the positively buoy- 
ant blob came from above than from below. During its descent,
therefore, it must have undergone some mixing with negatively 
buoyant fluid thereby smearing out the negative buoyancy gradi- 
ent in its wake. No such smearing of the positive buoyancy gradi- 
ent beneath the blob occurs. The net result is a positively skewed 
distribution of @b=@z. We can enlist the above argument in toto 
to explain the skewness of @b=@y when hv 0b0i > 0, as is the case 
within the ML in our simulations. Following the same logical se- 
quence predicts a negative skewnes s for @b=@y. Moreover, the 
same arguments imply a reversal in the sign of hv 0b0i must lead 
to a reversal in the sign of the skewness. This is indeed the case 
for the ASM (Fig. 16) where the skewness of @b=@y and hv 0b0i re-
verse signs at almost the same depth. This behavior is absent in
the constant Kx simulatio ns.

4.8. Evolution of �sgs; @b=@y and N2

We conclude our results with time-depth plots of �sgs;N
2 and

j@b=@yj over the entire course of the simulation (Figs. 18–20) which 
make evident the differences in the temporal evolution of the flow
for Kx ¼ 1 m2 s�1;Kx ¼ 5 m2 s�1 and the ASM. We only show plots 
for KX1KZ1, KX5KZ1 and the ASM. The vertical profiles are located 
at the horizontal center of the domain, i.e., midway between the 
W–E and S–N boundari es.

The developmen t of instabilities is slowest for KX5KZ1 (Fig. 18),
as seen in the evolution of �sgs, which begins to attain non-negligi- 



Fig. 17. Vertical profiles of zonally, meridionally and temporally averaged 1014 �Q 
 rq (kg2 m�8 s�1), where Q is the ‘‘Q-vector.’’ The time-averaging window spans one 
inertial period (Tf ) centered at the time of the snapshot, where Tf ¼ 2p=f0 ¼ 17:5hours is one inertial period. The meridional averaging is performed across 6 km centered at
y ¼ yf ¼ 96 km, the initial location of the front. The circles on the black curve indicate the vertical grid levels. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article)

Fig. 18. Kx ¼ 5 m2 s�1: A representative vertical section-plot showing the local time evolution of �sgs;N
2 and j@b=@yj at a point midway between the W–E and S–N walls.
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ble values only after 9–10 inertial periods. This is due partly to the 
high value of Kx (Section 3.2) but Fig. 12 suggests the effects of ver- 
tical SGS mixing are also important. The results for KX5KZ1 con- 
trast the plots for KX1KZ1 and the ASM, where we see the 
presence of regions within the ML with high �sgs after 5–6 inertial 
periods. The temporal evolution of N2 shows restratification is
weakest for Kx ¼ 5 m2 s�1, which is consistent with decreased 
buoyancy fluxes (Fig. 14). For the ASM, maximum restratification 
occurs at mid-depths within the ML after 15Tf when we first ex- 
ceeds w. These spots associated with strong restratification are col- 
located with regions of intensified @b=@y.

Relative to the initial peak value of jS2j (� 10�7 s�2), the amplifi-
cation of jS2j is lesser for Kx ¼ 5 m2 s�1 compared to Kx ¼ 1 m2 s�1

and ASM. For the latter two cases, the local intensification of jS2j



Fig. 19. Kx ¼ 1 m2 s�1: A representative vertical section-plot showing the local time evolution of �sgs;N
2 and j@b=@yj at a point midway between the W–E and S–N walls.

Fig. 20. ASM: A representative vertical section-plot showing the local time evolution of �sgs;N
2 and j@b=@yj at a point midway between the W–E and S–N walls. The range on

the �sgs colour bar differs from those in Figs. 18,19 .
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occurs at both shallow depths and deeper down in the ML, in some 
cases enhancin g jS2j to three times its initial value (0:9� 10�7 s�2).
5. Summary 

The motivations behind this study are twofold: (i) to estimate 
what is a physically meaningful level of subgrid dissipation in sim- 
ulations where the grid cutoff resolves part of the submesoscale 
(O(1–10) km) spectrum; and (ii) to explore the sensitivit y of the 
resolved-sca le features in such simulations to the level of sub- 
grid-scale dissipation. Previous studies show the transition from 
an inverse to a forward cascade at the submesosca les which 
suggests submesosca le-resolving simulations might permit the 
use of LES-based subgrid models, most of which are designed to
ensure a forward cascade of energy from the resolved to the 
subgrid scales. Accordingly , the two subgrid closures we choose 
are: (i) an LES-based closure: an anisotropic Smagorinsky model 
develope d specifically for computational grids where the 
horizontal resolution is much coarser than the vertical resolution 
(Roman et al., 2010 ); and (ii) a non-LES closure that uses 
constant lateral SGS viscosities and an analytically prescri- 
bed background vertical SGS viscosity. The anisotropic Smagorin -
sky model (or ASM) prescribes both lateral and vertical SGS 
viscositie s as functions of the resolved-sca le strain rate and the 
grid spacing.
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Our problem of choice is a mixed-layer density front forced by
downfront winds. Guided by past studies (Mahadevan et al.,
2010), we prescribe simulation parameters that yield quasi-equi- 
librium condition s. To estimate the appropriate subgrid dissipatio n
we analyze the balance between the different terms in the eddy ki- 
netic energy budget. From the budget analysis, we identify two dis- 
tinct layers within the ML: (i) a shear-drive n layer near the surface;
and (ii) a buoyancy-driven layer deeper down. The shear-drive n
layer is similar to a traditional Monin–Obukhov layer in that the 
dominant production and destruction terms are a geostrophic 
shear and subgrid dissipation, respectively , both of which scale 
on the surface-layer parameters u� and z. We observe this balance 
in all the simulatio ns. The depth of this shear-drive n layer is deter- 
mined by the Ekman buoyancy flux. Below the shear-drive n layer,
all simulations predict the dominant gain term in the budget is the 
buoyancy flux, which in most cases, scales on the Ekman buoyancy 
flux. The behavior of the other terms in the energy budget, how- 
ever, varies considerabl y among the different simulations. For con- 
stant Kx, the subgrid dissipation does not enter the balance due to
its low magnitud e. As a result, these simulations predict the buoy- 
ancy flux is offset almost solely by pressure transport. Physically,
this means the constant Kx simulations predict much of the energy 
generated near the front is radiated with very little of it destroyed 
locally via subgrid dissipatio n, whereas measureme nts show en- 
hanced dissipation levels (D’Asaro et al., 2011; Nagai et al., 2012 )
near fronts. With the anisotropic Smagorin sky model the balance 
involves multiple terms: buoyant production, pressure transport,
advection and subgrid dissipation. The magnitud e of buoyant 
production in this layer scales on the Ekman buoyancy flux. The 
subgrid dissipation is smaller in magnitud e than the buoyancy flux
but is of the same order of magnitude and hence, contributes to the 
energy balance. Based on these findings we recomme nd a level of
subgrid dissipation of the kinetic energy that is of the same order 
as the EBF in submesoscale-r esolving simulatio ns. This recommen- 
dation holds only for quasi-eq uilibrium conditions. The subgrid 
dissipation of potential density variance appears to be less impor- 
tant due to negligible production of the same at quasi-equilibrium 
conditions. This is consistent with the use of a subgrid-scale model 
in the momentum equation alone, a practice previous studies have 
adopted (Fox-Kemp er et al., 2008; Ozgokme n et al., 2009 ).

The temporal and spatial evolution of the submesocale instabil- 
ities display considerable variabilit y among the different simula- 
tions. The simulations with Kx ¼ 5 m2 s�1 are associated with 
slower onset of instabilities, inefficient extraction of available po- 
tential energy, weakene d cascades (inverse and forward) and neg- 
ligible frontogenesis. These features are reproduced more 
realistically in simulatio ns with Kx ¼ 1 m2 s�1 or the ASM. The con- 
siderably different results for Kx ¼ 5 m2 s�1 results are attributable 
partly to the adverse influence of the lateral viscosity on the insta- 
bility scale, suggesting Kx ¼ 5 m2 s�1 might be too high a value for 
the lateral SGS viscosity. This reasoning, however, ignores the role 
of vertical SGS mixing. Indeed, we observe non-trivial variabilit y
among simulations with the same value of Kx but different vertical 
SGS viscosities.

We conclude the parameterizati on of subgrid mixing can have 
important consequences for the evolution of submesosca le insta- 
bilities in simulations where the grid spacing resolves the submes- 
oscales. Our results show developing better subgrid models for 
such simulations will require considerati on of lateral and vertical 
subgrid mixing in concert. Finally, we have shown the use of
LES-based closures is consistent with submesoscale-r esolving sim- 
ulations provided the grid is fine enough to resolve the onset of the 
forward cascade.

In this study, we have focused on the level of subgrid dissipa- 
tion and not on how it is achieved. Further work is required to
determine whether different subgrid-sca le models yield different 
resolved- scale statistics for the same level of subgrid dissipatio n.
Insights gained from analyzing the eddy kinetic energy budgets 
in submeso scale-resolving simulatio ns for a wider variety of forc- 
ing conditions than those considered in this study will be useful 
in developing subgrid closures.
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