SEPTEMBER 1996

MAHADEVAN ET AL.

1881

A Nonhydrostatic Mesoscale Ocean Model. Part II: Numerical Implementation

AMALA MAHADEVAN

Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

JOSEPH OLIGER

Department of Computer Science, Stanford University, Stanford, California

ROBERT STREET

Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

(Manuscript received 13 March 1995, in final form 27 February 1996)

ABSTRACT

The nonhydrostatic model with a free surface is numerically implemented in boundary-fitted curvilinear co-
ordinates to model the mesoscale circulation in an ocean basin with natural topography. A semi-implicit nu-
merical scheme is used, and the directional inhomogeneity in the elliptic equation for pressure is exploited to
speed up the computation of its solution while using the multigrid method.

The model is used to simulate the circulation in the Gulf of Mexico. We observe the formation of the Loop
Current and several eddies. The flow is very strongly controlled by the topography and our numerical experiments
reveal that in the bottom layers, the flow along topographic contours is in the opposite direction of the anticy-

clonic circulation in the top layers.

1. Introduction

Much of the ocean’s kinetic energy is manifest in
(10-100-km length) mesoscale motions, as in mean-
dering currents and eddies. Such motions play a sig-
nificant role in the ocean’s climate and in transporting
heat, salt, and momentum. The associated flow fields
are three-dimensional, time dependent, and character-
ized by horizontal velocities of 0.1-1 m s~!, a small
ratio of depth to length scales, and Rossby numbers in
the range 107'-1072. Our interest lies in modeling
such motions in a region of the ocean.

In the preceding paper, Mahadevan et al. (1996), we
developed an accurate three-dimensional model for
mesoscale flow that is well-posed in domains with open
or solid boundaries. The model is ‘‘quasi’’-nonhydro-
static, in that it permits a greater deviation from hydro-
static balance than exists in the ocean. This approxi-
mation is used instead of the usual hydrostatic approx-
imation to alleviate the demand on the high accuracy
that is needed (but difficult to maintain) in integrating
the vertical momentum equation. Unlike the hydro-
static (primitive) equations, this model is accurate in
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all three-dimensions and is well-posed in domains with
open boundaries. These attributes are of importance in
mesoscale modeling where modeling the small but rel-
evant vertical velocity is important, and open bound-
aries are inevitable. Mesoscale features are often lo-
calized and the resolution required for them is presently
unaffordable for the entire world’s oceans. The model
has a free surface. The boundary condition at the top
surface is thus accurate and does not corrupt the vertical
velocity field as does the rigid-lid approximation.

In this work, we develop an efficient numerical so-
lution procedure for the model and put it to test in the
Gulf of Mexico. We numerically integrate the equation
for the free-surface position and terms involving the
free-surface pressure gradient implicitly, while treating
the other terms explicitly. Thus, the gravity wave
speed, which is 102~10° times that of the fluid, does
not govern the time step of integration. We use a mul-
tistage time integration scheme, and both the implicit
and explicit parts share the same time stages. The free-
surface position itself is computed by solving a two-
dimensional elliptic equation.

Being nonhydrostatic, the model requires that we
compute the three-dimensional pressure field using an
iterative procedure. This is computationally intensive,
and is what often deters modelers from using the non-
hydrostatic equations unless nonhydrostatic effects are
significant as in open ocean convection (Jones and
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Marshall 1993). In the free-surface formulation of the
model used here, we take advantage of the inhomoge-
neity (that results from near hydrostatic balance) in the
elliptic equation for the nonhydrostatic component of
pressure, to speed up the solution procedure by a factor
of 5-8 over the corresponding rigid-lid problem. The
solution of these equations is viable even on a work-
station and is only a few times more expensive than
that of the hydrostatic equations.

The numerical model is developed with the follow-
ing features.

1) It can be used in a domain with a complex ge-
ometry such as that of a natural ocean basin. A curvi-
linear body-fitted grid is used to discretize the ocean
basin with its undulating bottom topography, curved
lateral boundaries, and free surface.

2) The model is well-posed. It may have solid or
open lateral boundaries, provided the necessary bound-
ary condition data is available at these.

3) The top boundary of the domain is a free surface.
The grid reconfigures itself to this boundary as it moves
in time. A semi-implicit discretization of the free sur-
face overcomes the restriction on the time step imposed
by the speed of the external gravity waves.

4) A finite volume formulation is used and the equa-
tion of continuity is satisfied in the discrete sense. Sca-
lar variables are also conserved. The ‘‘QUICK’’
scheme (Leonard 1979) is used for the advective terms.

5) A multigrid solver is written to speed up the so-
lution of the three-dimensional elliptic equation for the
nonhydrostatic pressure field. The decoupling of the
pressure into hydrostatic and nonhydrostatic compo-
nents enables taking advantage of the shallowness of
the flow and makes the computation of the three-di-
mensional nonhydrostatic pressure field extremely fast.

6) The numerical procedure is made efficient so that
we can integrate the equations over sufficiently long
periods of time to observe the development of the
mesoscale flow. ‘

7) The model does not rely on an eddy viscosity
term for its stability. This is important since viscous
effects are negligibly small at the length scales that are
of interest to us.

We use the model to simulate the mesoscale circu-
lations in the Gulf of Mexico driven by the inflow and
outflow. The effects of wind forcing, as well as heat
and salt fluxes are thought to be less dominant than the
inflow and outflow forcing and are neglected from the
model for the present. Observations made under dif-
ferent conditions give us some insight into the physics
of such flows, and into the effect of various factors on
the circulation. We find the circulation in the gulf to be
very strongly driven by the topography.

In what follows, we begin by presenting the equa-
tions that comprise the model in section 2. In sections
3-5 we describe the numerical implementation of the
model in curvilinear coordinates and explain the
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speedup we are able to achieve in solving the elliptic
equation for pressure. In sections 6—8 we apply the
model to simulating the mesoscale circulation in the
Gulf of Mexico and present some analysis to explain
our numerical results.

2. The model equations

Neglecting viscous effects, diffusion of heat and salt,
wind forcing, and fluxes of heat and salt, the dimen-
sionless equations that constitute the quasi-nonhydro-
static free-surface model for mesoscale flow are

Ds
e 2.1
, Dt 0 (2.1a)
DT
- = 2.1b
D 0 (2.1b)
D 1
Fltl +—(gh, + 1.+ 6g, — fv + ebbw) =0 (2.1c)
€
Dv 1
o ;(ghy +r,+6g +fu)y=0 (2.1d)
Dw (u? +v?)
—+Blqg,—bu—e\—= =0 (2.1e)
Dt a
u, +v, + ew, =0 (2.1f)
p=np(s,T) (2.1g)
oh el 9 H/Dh
PP [a— (f “dz>
a H/{Dh
+ 2 (f vdz)] =0, (21h)
ady —d
where
— =u i V— + ew—
Dt ox ady ¢ 0z

Here x and y are defined as eastward and northward
distances along the surface of the globe, z is the dis-
tance from the surface of the globe in a direction an-
tiparallel to gravity, and ¢ is time. The dimensionless
Coriolis parameters f and b are twice the earth’s an-
gular velocity resolved normal and tangential to the
earth’s surface at a given point. The velocity compo-
nents u, v, w are in the x, y, z directions, respectively.
The variable s represents the salinity, T the potential
temperature, /2 the elevation of the free surface, ¢ the
nonhydrostatic component of the pressure, r the hydro-
static pressure due to density variations from the mean,
p the potential density, and a the distance from the
center of the earth. All the quantities have been non-
dimensionalized so that they and their derivatives are
order 1. The dimensionless parameter \ is the ratio of
the characteristic horizontal length scale to a charac-
teristic value of the earth’s radius, ¢ is the aspect ratio
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or ratio of depth to length scales, e is the Rossby num-
ber, ¥ is the Froude number, and H/D is the ratio of
characteristic free-surface elevation to depth scale.

Equation (2.1g) is an equation of state for poten-
tial density. In these equations we resort to the Bous-
sinesq approximation. Forcing terms, and any param-
eterization for subgrid-scale motions may be added.
The dimensionless coefficient that would appear in
the exact vertical momentum equation is replaced by
a relaxation parameter g that is much smaller than it.
The relative solution error due to this relaxation is
O(B™"). The scaling of the equations and develop-
ment of the model is described in detail in Mahade-
van et al. (1996).

3. Numerical framework
a. The boundary fitted curvilinear coordinate system

In order to model the natural geometry of a region
of the ocean, we discretize our ocean domain with a
smooth boundary fitted curvilinear grid that maps into
a uniformly discretized cube in which we solve the
equations. The mapping from the computational to
physical space, where the variables are &; and x;, re-
spectively, is defined in terms of the transformation Ja-
cobian d,, = 9x;/d¢; or its inverse. Only the indepen-
dent variables (7, x, y, z) in the physical space are
transformed into (7, £, 7, o) in the computational
space, with the dependent variables retaining their Car-
tesian orientations. Such coordinate transformations are
described in many places in the literature, for example,
in Meakin and Street (1988), Perng (1990), and Zang
et al. (1994).

The ocean surface of the region we are modeling is
mapped onto the top face of the cube in our computa-
tional domain. The bottom face corresponds to the
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ocean bottom. The lateral faces are the four lateral
boundaries of the region and are taken to be vertical
surfaces. When the lateral boundary is a coastline, we
approximate it by a vertical wall of certain minimum
height that maintains the required minimum grid spac-
ing for numerical stability.

In the vertical, we use a o-coordinate system that
configures smoothly to the undulating bottom topog-
raphy and to the free surface. We define it as

z+d
= “N,,
? <h-+d> -

where N, is the number of grid intervals in the ver-
tical direction, d is the depth of the ocean floor, £ is
the free-surface elevation, and z is measured positive
upward with reference to the mean sea level. The grid
interval Ao is taken to be 1. Equation (3.1) is dif-
ferentiated to obtain o,, 0., 0y, 0;, and could easily
be modified for a stretched grid or a grid in which
only the top few layers reconfigure to the changing
free surface.

In plan view, we discretize the domain by a smooth
curvilinear grid in (£, n) that remains fixed in time.
When viewed from the top, this grid is the same at each
of the o levels. Hence

&=0, n,=0, &=0,

Since the time variable is unchanged by the mapping,
that is, 7 = ¢, it is independent of the spatial coordinates
and

(3.1)

n. = 0.

=1 7=0, ,=0, 7,=0.
Usually x;, x,, e, X, are available from the grid gen-
eration, but we can easily convert them to &,, &, 7., 7y

using

1 0 0 0
_ _a_é_z -1 _ 0 y,,/sz —X,?i’fzd 0
9o =5, =9 =| o Vel Joa xel Do o |’ (32)
~2/2s  (Ve2n — Yp2e)lJoa  (Xnze — Xe2p)lJoa 1124

where J = det(d,,) and J,; = Xy, — X,y = 0,J.

b. The equations in strong conservation law form and their transformation to curvilinear coordinates

We convert the equations into strong conservation law form before solving them numerically. Using the
continuity equation (2.1f), we rewrite the dimensionless time-dependent equations (2.1) as

s us Us
9 T 9 , uT 9 vT
EY u |+ ™ u®+ple | + ™ uw
v * uv Y\ v?+ple
w uw uw

EWS 0
9 ewT 0
+ — euw + | —fule + bbw | = 0, (3.3)
9z evw fule
ew? + Bq — Bbu
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where
p=gh+r+éq.

We have neglected the curvature term —fBe\(u?
+ v?)a ' since we will be using a value of B < (e\)™".
The system of equations (3.3) can be written as

oF;
—++8=0,
an
Js Us Vs Ws
9 JT 9 ur VT 9 wT
(9_ Ju +(9_ Uu +5- Vu +a— Wu | +
t Jv ¢ Uv T w 71 wv
Jw Uw Vw Ww
where
U= J(ué, +1€,)
V= J(un, +vn,)
W= J(o, + uo, + vo, + ewo,) (3.6)

represent the volume fluxes across the cell faces per
unit time. They are equal to the contravariant velocity
components multiplied by the area of the cell face to
which they are normal. The relation between u, v, w
and U, V, W is expressed by

U = Jdgu, (3.7)

where

U=(,U, VW) u=(1,u,v ew)’!

(3.8)

and dy, is defined in (3.2). The parameter € enters the
definition of W due to the scaling (because the quan-
tities x, y, z, u, v, w, etc. are all dimensionless quan-
tities). The definition of W takes into account the
movement of the grid in the o direction.

Similarly, using the chain rule and metric identity
(3.4), we transform the continuity equation (2.1f) into

or 8¢  onp  do

(3.9)

The quantity dJ/dT represents the change in volume of
a grid cell per unit time. A more convenient form of
the continuity equation is

ou v

oW
-+ +—=0, 3.10
96 dn o ( )
where
W = J(uo, + vo, + ewo,) (3.11)

and differs from W by Jo,.
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where x; are the components of (¢, x, y, z) and F; and
S are the corresponding vectors in (3.3). Applying the
chain rule to this system, multiplying through by J
= det(0x;/0¢;) and using the metric identity

8 (06, _
3., <J ox, ) =0, (3.4)
we get
0
0
J(peés + pony + poo. — fo + €dbw)/e | =0, (3.5)

J(pe&y + pyny + Pooy + fu)l €
Jﬂ(qaaz - bu)

Equation (2.1h) for the free surface is mapped from
(¢, x, y) space to (7, &, n7) space using the two-dimen-
sional (2D) transformation matrix

Lt 1 0 0
dy=\x x x)={0 x x,].
Yr Y& Yo 0 Ye ¥

The 2D Jacobian J,, = det(d% ) = x¢y, — x,y¢ repre-
sents the area of the top face of a grid cell. Expressing
(2.1h) in the form

Dot \ox/)_,

where x; corresponds to x, y and ¥*/e = H/D, multi-
plying by J,4, using the chain rule and the metric iden-
tity in 2D, gives the following equation for the free

surface in flux variables:
oh N N
59,2 ([ as) o 2 ([*var) o
0 0
(3.12)

sz"__

L9
D or . 9n

¢. Boundary conditions in the transformed
coordinates

The boundary conditions that we specify in our prob-
lem are the flux quantities U™*' at £ = const lateral
boundaries, V**! at = const lateral boundaries, W"*!
at the bottom boundary o = 0, and the pressure at the
free surface. The flux across a solid boundary is zero.
At an open boundary (inflow or outflow), we prescribe
the flux cellwise across the boundary surface. We have
the option of prescribing the pressure instead of the
cellwise flux at the outflow. Since the flux is'the normal
velocity multiplied by the surface area, specifying the
flux is equivalent to specifying the normal velocity and
surface area at a boundary. At the inflow we must spec-
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ify s, T and the complete velocity vector, which in-
cludes the normal and tangential velocity components.

d. Arrangement of the grid and variables

We use a control volume formulation and position
the variables as in Zang et al. (1994). The variables p,
q,r,s, T, u,v, w are specified at centers of the com-
putational cells. The grid indices i, j, k correspond to
the &, n, o directions. The number of grid intervals in
each direction is denoted by N;, N;, N;. Since A = An
= Ao = 1, the values of &, n, o coincide with the grid
indices i, j, k and range from O at one boundary surface
to N;, N; or N, at the opposite boundary surface of the
domain. The grid cells are referenced by i, j, k, where
i=1,-,Ni,j=1,---,N, k=1, -, Nyinside the
domain. In addition to the interior cells, there is a single
layer of ‘‘ghost’’ cells outside the domain’s boundary
surfaces (ati =0,i=N; +1,j=0,j=N;+ 1,k =0,
k = N, + 1) that are used to facilitate the specification
of boundary conditions. Each grid cell has an east,
west, north, south, top, and bottom face denoted by e,
w,n,s,t, b. The £, n, o faces range fromi =0, - - -,
Ni,j=0,---,N,and k =0, - -, Ni. The flux U is
specified on the east and west face, V is specified at the
north and south face, and W or W are specified at the
top and bottom face of a cell.

4. Solution procedure

We integrate the advective terms explicitly, but treat
the free-surface terms and free-surface equation im-
plicitly so that the surface gravity wave does not govern
the time step of integration. This can be done within a
third-order Runge Kutta scheme, in which the uncon-
ditionally stable implicit procedure shares the same
time stages as the explicit one. The time step of inte-
gration is thus conveniently based on the fluid velocity.
Our numerical procedure combines algorithmic ideas
from the fractional step method of Kim and Moin
(1985) and the semi-implicit free-surface formulation
of Casulli and Cheng (1992); Casulli (1995) while
using the numerical framework of Zang et al. (1994).
The method used by Dukowicz and Smith (1994) for
free-surface calculations is similar to the method that
is proposed in Casulli and Cheng (1992) and used here.

The solution procedure for advancing the solution
from time step n to n + 1 consists of 5 steps (they may
be implemented at each stage of a multistage scheme)
and are summarized as follows:

1) Compute a preliminary velocity field u*, v*, w*
and the final salinity, s"*' and temperature 7"*' by ex-
plicit advancement of the advective terms based on the
solution u”, v", w", s, T" at the previous step. Specify
temperature and salinity boundary conditions at the in-
flow. Evaluate the density p"*' at the new time step
and "' by integrating the density from the free surface
downward. The free-surface position used is that from
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the previous time level. Interpolate the preliminary ve-
locities on to cell faces to determine the preliminary
fluxes U*, V*, W* using (3.6) and (3.11).

2) Equations for the predictor horizontal velocities

i =u*— Ate Y (gDh" + D™ — fu" + edbw™)
I =v* — Ate—l(gDyhrH—l + Dyrn+1 +fu”), (41)

where D,, D, are discrete approximations to 0., 0,.
(For better accuracy, replace h"*' by the mean of h"
and A"*')) Write similar equations for the predictor
fluxes U, V, and substituting these into the discretized
equation for the free surface (3.12), obtain a 2D elliptic
equation for A""'. Solve this to obtain 2™*'. At the
boundaries we require I or V summed over the depth
as boundary conditions. We assume these to be the
same as the final boundary conditions since the contri-
bution of the nonhydrostatic pressure is very small in
the horizontal momentum equations.

3) Now compute the predictor velocities @, ¥ from
u*, v¥, w* using (4.1). Also compute the correspond-
ing fluxes U, V, W at cell faces.

4) The equations for the final velocities are written
as

un+l =0 — AtG_I(Squn-H
vn+l =9 — Ate—laqun+l

Wl = w — AtB(D,g"" ! — bi).  (4.2)

Write corresponding equations for the fluxes U™,
vyl qent! and substitute these into the discretized
continuity equation (3.10) to obtain a 3D elliptic equa-
tion for the nonhydrostatic pressure g"*'. Solve this
equation while specifying velocity fluxes at lateral and
bottom boundaries and ¢"*' = 0 at the free surface. At
the outflow we may specify either the flux or the dis-
tribution of pressure ¢"*'. A reasonable pressure dis-
tribution to use is one that results in no vertical accel-
eration as the fluid exits the domain.

5) Compute the final velocities u™*!, v"*!, w"*! us-
ing (4.2) and specify the velocities at the inflow. The
corresponding fluxes U™, V**! 99"*! with their val-
ues specified at lateral and solid boundaries satisfy the
discrete continuity equation to within a factor of the
tolerance set on the residual in the elliptic equation for
nonhydrostatic pressure.

The procedure described is conservative in volume
and in the scalar quantities such as temperature and
salinity. Since we ensure that the volume flux into the
domain is equal to the volume flux out of the domain
at the predictor step, the mean sea surface elevation
remains zero throughout the computation. At each
step, the terms on the right-hand side of the elliptic
equation for ¢"*' contain a flux balance across cell
faces at the previous step. Hence, each time the resid-
ual is fed back into the right-hand side of the elliptic
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equation. This ensures that there is no growth in the
divergence of the velocity with time. For a more de-
tailed account of the step-by-step solution procedure
see Mahadevan (1995).

5. Solution of the elliptic pressure equation in
curvilinear coordinates

The solution of the elliptic pressure equation in
three-dimensions is computationally the most expen-
sive step in the solution procedure. We find that it is
possible to greatly speed up the solution by (i) using
the multigrid technique and (ii) making use of the free-
surface formulation to decouple the pressure into hy-
drostatic and nonhydrostatic components, and then tak-
ing advantage of the inhomogeneity in the nonhydro-
static pressure equation.

a. Multigrid solution technique

The transformation from curvilinear coordinates re-
sults in the coefficients in the elliptic difference oper-
ator varying with each grid cell. This precludes the use
of direct solvers for the elliptic equation. We thus resort
to the multigrid technique (Brandt 1984), which has
been shown to work well in the case of curvilinear co-
ordinates by Perng (1990) and Zang et al. (1994). The
solver we have developed uses a V cycle with Gauss
Seidel relaxation at each level.

b. Advantages of the free-surface formulation

In the free-surface model, thé pressure at the free
surface is specified as a Dirichlet boundary condition.
The linear system arising from the discretization of the
elliptic equation for pressure is positive definite and has
better properties than the singular system that results
from the corresponding rigid-lid problem with flux
boundary conditions. ,

B

{(qi+1 —2q; + i) + (gis1 — 2g; + q-1) +

> =
SN N

1
At

The subscripts n, s, ¢, w, ¢, b on a quantity indi-
cate the cell face at which it is specified, and the
square brackets indicate interpolation on to a cell
face.

We see that, if €28/6 = 1, the diagonals of the
matrix of the linear system are —1, -1, —1, —1, —1,
—1, 6. On the other hand, if €23/6 = 10, the diagonals
are —1, -1, —1, =1, —10, =10, 24 and the system
can be solved much faster than the previous one by
using block relaxation, which is equivalent to line by
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There is a second more distinct advantage to the free-
surface formulation in the model where we modify the
hydrostatic balance. This arises from the fact that the
coefficients on the vertical arm of the difference stencil
are 1 or 2 orders of magnitude larger than the other
coefficients. Three of the diagonals in the matrix of the
linear system are therefore much more dominant than
the others. The variation of the second derivative of the
nonhydrostatic pressure is very small in the vertical as
compared to the horizontal direction, and the system
can be solved very rapidly using line by line relaxation
in the vertical. To illustrate why this is so, we consider
the solution of the dimensionless form of the equations
on a rectilinear grid using a simple time integration
scheme to advance the solution from time step n to n
+ 1. If the final velocities are computed using

un+l = — AZE_léqun_H
vl =19 — Ate'6D,q"™"!
w' = w* — AtB(D,q""" — bid), (5.1)

where At is the time step; D,, D,, D, are discrete ap-
proximations to d,, d,, d,; Ax, Ay, Az are dimension-
less grid spacings in the x, y, z directions; and the fluxes
defined as U = ulAyAz, V = vAxAz, W = ewAxAy
are computed as

Uttt =0 - Ate“lépxq"+lAyAZ
yrrl =y — AIE_I(Squ"HA)CAZ
wn+l — 6Z;j_ Ateﬂ(qu'ﬁLl — bﬁ)AxAy, (52)

then the discrete elliptic equation formed by substitut-
ing the above fluxes into the discrete continuity equa-
tion (3.10), using central differencing and assuming
all the dimensionless grid spacings equal A is

n+1
- 2q, + Qk—l)}

2

ﬁ—ﬂ+%~%»ﬁ§qu4WMA.w&

line relaxation in the vertical. Thus, it is a great nu-
merical advantage if €?8/6 > 1.
In the case of the rigid-lid formulation, the vertical

momentum equation is given by

Dw

— +ta + — 6bu) = 0,

Dt 1(p. + pg )
where a; replaces the coefficient 1/€°6> in the exact
equations (Mahadevan et al. (1996). The hydrostatic
balance is not subtracted out in this case, since the total

(5.4)
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pressure p is not decomposed into hydrostatic and non-
hydrostatic components. The discrete elliptic equation
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for pressure formed from the continuity equation is
then

{(pic1 — 2p; + pic) + (s — 2p; + pjy) + €’y (Prar — 2pi + pi) I

1 €
=——(U¥-U%+ V¥ —
AtA(Ue

The numerical solution of this system could be speeded
up if €’a, were large, but it is not.

In the above equations, we wish to make «, and 8
as small as possible to alleviate the problem of insuf-
ficient accuracy encountered when computing the dif-
ference of the pressure gradient and buoyancy terms in
the exact vertical momentum equation. Yet, a; and 8
must be kept larger than a certain minimum value in
order that the solution of the modified equations does
not differ from that of the original equations by more
than a certain permissible amount. A value of 100 for
both ; and 8 maintains two digits of solution accuracy.
The free-surface formulation is much more advanta-
geous than the rigid-lid one because a larger value of
the coefficient in the pressure equation can be achieved
while keeping a; and § as small as possible. Table 1
illustrates this. When ¢ = 0.1, we get almost an order
of magnitude speedup in the numerical solution by go-
ing from the rigid-lid to the free-surface formulation.

Thus, we have seen that it is possible to take advan-
tage of the inhomogeneity in the elliptic pressure equa-
tion with the free-surface formulation. The free-surface
formulation also has the advantage of a Dirichlet
boundary condition at the free surface.

It is worth noting that in the original nonhydrostatic
equations, that is, the equations without the approxi-
mation that permits an exaggerated deviation from hy-
drostatic balance, the value of the crucial coefficient in
the 3D elliptic pressure equation would be 1/62, irre-
spective of whether the equation were for the total pres-
sure or merely its nonhydrostatic component. This is
apparent if we recollect that in the approximation, «,
and (3 replaced the coefficients 1/¢?6% and 1/€25. The
large value of 1/62 that results from the shallowness of
the fluid also implies near hydrostatic balance. For the
same reason, however, the original equations prove to
be difficult in the integration of the vertical momentum

VE 4+ WE~ W) + a([pgl — [pgly) + - -+ Coriolis terms.

(5.5)

equation and we cannot use them even though solving
the elliptic pressure equation would be easy.

Solving the elliptic pressure equation with Neumann
boundary conditions in this framework is peculiar due
to the fact that the grid is not orthogonal to the bound-
ary. Since the specification of the normal derivative at
a boundary involves cross-derivative terms, points out-
side the boundary cannot be eliminated explicitly from
the system. They must ideally be included in the vector
of unknowns when solving the linear system arising
from the discretized elliptic equation. If, however, a
Dirichlet boundary condition is prescribed at a cell face
as being the mean of two adjacent cell values, then the
point outside the boundary must be eliminated from the
vector of unknowns. If included, the matrix of the linear
system is no longer positive definite and convergence
is not achieved by common iterative methods. Alter-
natively, solving a linear system for the values in the
interior of the domain, and using the boundary condi-
tions to update the points outside the boundary with
each iteration also works.

When the grid cells along a boundary are skewed,
the off-diagonal metric terms in the Jacobian matrix are
large. If the cross-derivative terms exceed the across-
boundary derivative terms that comprise the normal de-
rivative at a boundary, then using the Neumann bound-
ary condition is problematic. Convergence is not
achieved because the normal derivative in physical
space lies more along the tangential direction in com-
putational space. Grid skewness at the boundary that
results when steep topography intersects a lateral
boundary or when the domain is complicated in shape
should therefore be minimized.

6. Modeling the circulation in the Gulf of Mexico

We now use the numerical model based on the quasi-
nonhydrostatic equations to simulate the flow in a nat-

TABLE 1. Possible values of the coefficient in the elliptic equation.

Value of coefficient when

Coefficient e=10"4 a; = 102 g = 10° e=107a; = 10% § = 10°
Free-surface model €*Bl6 100 10
Rigid-lid model €’oy 1 0.1
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ural ocean basin: the Gulf of Mexico. Our objective is
to demonstrate the use of the model by simulating the
circulation pattern, and we have not attempted to use
real data to simulate a particular period in the history
of the gulf, nor have we used wind stresses, heat, or
salt fluxes at this stage. Since the equations are well
posed, we model the gulf without additional buffer
regions at open boundaries, and with either no viscous
dissipation term or one that is very small.

The Gulf of Mexico is a more or less enclosed basin
situated between 18° and 31°N, 80° and 98°W. It is
connected to the Caribbean Sea through the Yucatan
Channel and to the Atlantic Ocean through the Straits
of Florida. The Gulf Stream, which enters through the
Yucatan Channel and leaves through the Florida
Straits, drives the circulation in the basin. The gulf has
a shallow shelf less than 500 m in depth (see Fig. 1)
that extends out several hundred kilometers from the
shore before the ocean bed plunges to depths as deep
as 3500 m.

Modeling an ocean region requires data at open
boundaries and the data required depends on whether
there is inflow or outflow at the boundary. In the Gulf
of Mexico there is predominantly inflow through the
Yucatan Channel and outflow through the Straits of
Florida. The channel fluxes are estimated to be about
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30 Sv (1 Sv = 10°m? s™'). Earlier numerical studies,
for example, Hurlburt and Thompson (1980), reveal
that the gulf circulation is not significantly affected by
small variations in the inflow nor by winds. Hence, it
is possible to model the guif circulation quite realisti-
cally without using very specific time-dependent
boundary conditions.

a. Observed circulation in the gulf

Studies of the gulf’s circulation by Vidal et al.
(1994), Hofmann and Worley (1986), Elliott (1982),
and Lewis and Kirwan (1985) have shown that it is
predominated by an anticyclonic (clockwise) circula-
tion that intensifies into a western boundary current
along the western margin. In the east, the inflow
evolves into the Loop Current, which exits through the
Straits of Florida. The intrusion of the Loop Current
varies with time, and periodically (about once or twice
a year) the loop folds back on itself and gets pinched
off to form an anticyclonic ring. Such rings typically
have diameters of 200—300 km and drift westward at
approximately 2 km day~'. The Loop Current rings
carry a warm and salty core of Caribbean water and
leave an identifiable signature in the isotherm and iso-
haline lines. The rings persist from several months to

20°

\‘
A\
e~

8O*

F1G. 1. Bathymetry of the Gulf of Mexico.



SEPTEMBER 1996

a year. Besides the rings pinched from the Loop Cur-
rent, there are several other cyclonic and anticyclonic
eddies generated by topography or other factors. More
recently, cyclonic—anticyclonic pairs of eddies have
been observed in the western gulf.

The Loop Current and western boundary current
can be easily observed in the top 200-500 m of the
gulf where their intensity is maximum. There is com-
paratively little observation of the deep circulation in
the gulf and current meter readings are scarce. Mol-
inari et al. (1978) claim the existence of a deep an-
ticyclonic gyre similar to what exists in the upper
layers, while Hofmann and Worley (1986) cite evi-
dence for the deep circulation to be a cyclonic gyre,
opposite in direction to the anticyclonic circulation
in the upper layers.

b. Geometric modeling of the physical domain

The lateral boundaries of the domain are formed
by the coastline of the gulf, the 21.5°N latitude
through the Yucatan Channel and the 81°W longitude
through the Straits of Florida. We approximate shal-
low coastal areas that are less than 500 m deep to
have a constant depth of 500 m and model the coast
as a vertical wall.

The plan view of the Gulf is mapped onto a square
that is one face of our computational domain. The ver-
tical lateral boundaries form the four lateral faces and
the ocean bed forms the bottom face. In the plan view
(see Fig. 2), the lateral boundary of the domain is com-
prised of four boundary curves, each a parametric B

Latitude
(degrees N)
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spline that has been fitted to data. Boundary curves 1
and 3 are described by parameter { € [0, N;], and
boundary curves 2 and 4 by parameter n € [0, N;],
where N; and N, are the number of grid intervals in the
¢ and n directions respectively.

Boundary curves 1, 2, 3, 4 are discretized, and a grid
is generated on the top boundary face using the grid
generation program of Venkata (1991) that uses trans-
finite interpolation to compute the interior points from
the boundary curves. Since we use a sigma coordinate,
the grid from the top surface is simply repeated at each
o level in the domain.

The bathymetric data is extracted from the database
ETOPOS (at the National Center for Atmospheric Re-
search), modified so that any elevation greater than
—500 m in our ocean domain is changed to —500 m,
and fitted with a bicubic B spline using the B spline
library in INTEGRA 3.2 (Pereyra 1990). The bicubic
B spline describes the surface topography as a contin-
uous function d = d (6, ¢) of longitude and latitude and
makes available the derivatives dy, d,.

In the vertical, we divide the total depth of fluid at
any point into N, equal layers. The layer interfaces are
surfaces of constant ¢ value and range from o = 0 at
the ocean bottom to ¢ = N, at the free surface.

c. Initial and boundary conditions for the Gulf of
Mexico

A two-dimensional geostrophic flow could be used
as the initial condition when the domain bottom is flat.
When the topography varies, we start the flow from rest

Straits
of Florida

277.5

275

Longitude (degrees E)

FIG. 2. Plan view of the grid for the Gulf of Mexico.
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F1G. 3. Numerical rigid-lid simulation of the Loop Current and eddy shedding in a rectangular basin. The domain is 400 km X 600 km

X 1000 m. The fluid is homogeneous with no variation of the flow in the vertical. The plots (a—f) show a progression in time of the
pressure and horizontal velocity fields at the 500-m level.
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FiG. 3. (Continued)

ity through the Yucatan to be approximately 0.93
m s~!. We vary the velocity with depth so that it is

small at the bottom of the channel. At the outflow we
prescribe a parabolic velocity profile that is gradually

steps to represent those in the Yucatan Channel. The
inflow profile is estimated from data published by Bois-

and linearly ramp the inflow velocities over 100 time
vert (1967), which shows the maximum current veloc-
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F1G6. 4. Numerical simulation of the Gulf of Mexico. The horizontal velocity field is plotted on a sigma surface. The top panel shows a
surface (layer 15) near the top. The bottom panel shows a surface (layer 2) close to the bottom that follows the topography. (a) day 104,

time step: 3000; (b) day 208, time step: 6000;

allowed to adjust with the constraint that the net out-
flow equals the net inflow into the gulf. This is a rea-
sonable assumption given that the mean sea level does
not fluctuate very much in the gulf.

The Atlantic temperature and salinity data from Lev-
itus (1982) is interpolated to specify initial S and T
fields that vary with latitude and depth. The initial val-
ues are held constant at the inflow over time.

Surface heat and salt fluxes are not included in the
model at the present but could be included for a more
realistic picture of the salinity and temperature fields.
Wind stress, river inflows, and seasonal variations in
- the Yucatan inflow are also neglected for the present
as their contribution to the mesoscale circulation in the
gulf is believed to be small.

d. Model parameters

Since the maximum Loop Current velocities are ap-
proximately 1.5 m s™', we choose U = 1 m s™! as the
characteristic velocity. The characteristic length scale
L of the eddies is 100 km, and since the rotation rate

parameter F = 107*s™', the Rossby number ¢ = U/
FL = 107". The characteristic free-surface elevation H
turns out to be 1 m for these parameters assuming
that the free-surface pressure gradient and Coriolis
forces are approximately in balance. The depth scale
D is 1000 m and the aspect ratio 6 = D/L = 1072,
We would like to use a horizontal resolution of ap-
proximately 10 km to resolve 100 km flow features
in the horizontal, and a vertical resolution of about
100 m in the deepest parts. However, we could not
afford this resolution for the entire gulf on the multi-
processor work-station we used for the simulations,
and hence used a coarser mesh of 48 X 32 X 16 grid
cells with an approximate resolution of 40 km X 40
km in the horizontal and 200 m at maximum in the
vertical. The vertical grid spacing varies with the
depth of the ocean, being maximum in the deepest
portions and minimum on the shelf regions. We set
the relaxation parameter £ in the vertical momentum
equations to be 100 in order to maintain two digits
of solution accuracy. We verify that the results are
not sensitive to this particular choice of 3, by com-
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FiG. 4. (Continued) (c) day 312, time step: 9000; and (d) day 416, time step: 12 000.

paring results obtained with S = 100 to those for 8
= 50, 25, and 12.5.

7. Analysis of the model

Before describing our numerical experiments, we
present some analysis to motivate the experiments and
to help understand the observations. We also examine
some of the consequences of our approximations.

a. Modification of the internal gravity wave speed

The model permits a greater deviation from hydro-
static balance than what exists in the ocean. The di-
mensionless equation for vertical momentum prior to
making any approximation is

Dw

1
Di +‘W (pz + pg — 6bu

2 2
~ \eb (—”—ZL)> 0, (7.1)

where p, is the vertical pressure gradient. The large co-
efficient 1/€%6% in the above equation is replaced by
a; in the model without free surface, where a; << 1/€252.

The external gravity waves are not affected by this
approximation as the free-surface pressure gradient
contributes only to the horizontal momentum equa-
tions, which are unaltered by the approximation. Let y
denote the ratio of the the coefficient 1/¢%6* that mul-
tiplies the pressure gradient and gravity terms in the
exact vertical momentum equation to its modified value
a;. In the case that e = 107!, § = 1072 and «; = 100,
v = 10*. If we neglect the effect of the earth’s rotation
and linearize the equations about a state of rest, the
dispersion relation for internal gravity waves in a con-
tinuously stratified ocean as derived by Gill (1982) is

w? = (k* + IP)N* (K> + I* + m?). (7.2)

Here w is the frequency of the internal gravity waves,
(k, 1, m) is the wavenumber vector, and N? is the buoy-
ancy frequency defined by N* = — g p5'dpy/dz, where
po(z) is mean density profile. The ratios k/m and I/m
are O(9) for the cases of interest to us. Dividing nu-
merator and denominator by m?, we observe that, since
6 <1,

w? ~ 28°N?/(26% + 1) ~ 26°N>.
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FiG. 5. Numerical simulation of the Gulf of Mexico with viscosity
(va =100 m*s™, vy = 10™* m? s~ and bottom drag. The horizontal
velocity field is plotted on a sigma surface at day 312, time step
= 9000. The top panel shows a surface (layer 15) near the top. The
bottom panel shows a surface (layer 2) close to the bottom that fol-
lows the topography.

By permitting a greater deviation from hydrostatic bal-
ance in the equations, the dispersion relation is altered
to

w? = (k% + P)N?*/(yk* + yI* + m?)
~ 28°N?/(26%y + 1)
= 26°N*/3
when
y=10% &=107. (7.3)

Hence, we see that changing the coefficient 1/¢257 to
ay in the equations reduces the frequency and conse-
quently the phase speed and group velocity of the in-
ternal gravity waves approximately by a factor of (26y
+ 1)"V2, where y = (1/€262)/a,. This factor is v3 in
the above example.
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b. Inclusion of the Coriolis term in the vertical
momentum equation

We have seen from the scaling in Mahadevan et al.
(1996) that the Coriolis term due to the tangential com-
ponent of the earth’s rotation that appears in the vertical
momentum equation cannot be neglected in the non-
hydrostatic equations. The equations for generation of
horizontal vorticity in the x and y directions are written
in dimensionless form as

aa_cl] + ﬂ(qzy - buy - byu) —e!

X [(pn + 6g),. + fu,}] =0
a
% (g~ bu) + € (py + 8g) — fu] = 0,

(7.4)

where {; = w, — v, and {; = u, — w,. The first-order
nonlinear terms have been neglected in these equations.
The horizontal gradient of (q, — bu) generates hori-
zontal vorticity that manifests itself as circulation cells
in the vertical.

c. Generation of vertical vorticity

The dimensionless equation for vertical vorticity
= v, — u, formed by cross differentiating and subtract-
ing the horizontal momentum equations is

— + e(ww, — wyu,)

Dr

+ <1f+§>(ux+vy)+5@= . (7.5)
€ € a

On neglecting terms less than or equal to O(e), the
above equation reduces to
DG

1 \ b
24 fu )+ =0,
€ € a

> (7.6)

Here (u. + v,) is O(e¢), and its product with f is re-
ferred to as vorticity stretching. The term e ~'\bv/a re-
sults from the variation of the vertical planetary vortic-
ity with latitude and is derived as

e fu =€ fypv = e "Nbv/a, (1.7)

where \ is the ratio of the length scale to characteristic
distance to the earth’s center, taken as 10’ m, and b, v,
a are dimensionless. If L = 10°m, U = 1 m s !, then
A =107%€e = 107", and the term ¢ ' f,u is O(107").

When the ocean bottom is flat and the flow is more
or less two-dimensional, vortex stretching is small and
the variation of the Coriolis parameter falong a north-
ward trajectory imparts negative vorticity to the flow.
This is responsible for the clockwise looping of the
Loop Current. When there are variations in topography,
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(u. +v,) = O(e), and the O (1) vortex stretching term
becomes the dominant vorticity generation mechanism.

d. Estimation of Loop Current intrusion and eddy
size using the theory of potential vorticity
conservation

The competing effects of topography and latitudinal
variation of f on the Loop Current can be examined
using the equation for the conservation of potential vor-

ticity
2 L.+_.§. =0 (7.8)
Dit\d+h) '
where d + £ is the total depth of fluid. An increase in
depth as the jet moves northward from the entrance of
the gulf results in positive vorticity that counters the
negative vorticity induced due to an increase in f.
Hurlburt and Thompson (1980) and Reid (1972) es-
timate the Loop Current intrusion and the size of the
shed eddy from the theory of potential vorticity con-
servation. Assuming a parcel to be moving at constant
velocity u, along the current core and neglecting the
effects of topography, the northward intrusion of the
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Loop Current just before the pinching of an eddy is
estimated in terms of dimensional quantities as

2u.a

172

l (29 cosqb(l cos ¢0)> , (7.9)
where a denotes the earth’s radius, ¢ the latitude, and
&, the mean latitude about which the latitudinal varia-
tion is linearized. The north—south extent of the loop
I, and the size of the eddy in the Gulf of Mexico is
estimated to be about 220 km by Reid (1972) and is
in agreement with our numerical observations in a flat-
bottomed rectangular basin (section 8a).

e. Effect of iopography

In order to quantify the effect of topographic varia-
tions we combine the vertical vorticity equation (7.6)
with the equation of continuity integrated over depth.
If the free-surface elevation is nondimensionalized by
the total depth, that is, A = h'D, then the dimensionless
equation of continuity for a column of fluid is

oh 9 ("
ot oxJ_y

Rewriting this equation as

a h
udz + —f vdz = 0. (7.10)
ay —d

oh f" oh oh od : od
—+ .+ v,)dz + =h)— =h)—+ =-—d)—+v(z=-d)——=0 (711
Fy _d(u v,)dz + u(z = h) o +v(z )ay u(z d) o v(z )8y (7.11)

and combining it with the vertically integrated vorticity equation (7.6) gives

"D e e —y? _
f_d Dtdz e(u(z~ d)ax-i—v(z——d)

Since h is not O(1) but is O(H/D) here, the terms
containing the partial derivatives of h are negligibly
small. Neglecting these, the equation simplifies to

" D f

ad od
—dz —— =—d)y—+ = —d)—
—a Dt ¢ €<u(z )ébc vz )8y>

D ("
+——f vdz = 0. (7.13)
€Eav_y4

The last term on the left-hand side is O(10™') when ¢
= 107!, A = 1072, Therefore, it must be that

u(z = —d)d, + v(z = —d)d, < O(¢), (7.14)

which explains why the bottom flow closely follows
the topographic contours.

The above equation suggests that the topographic
steering of the flow may be weakened if the abyssal
velocities are themselves negligible. This raises the
question as to whether the presence of a boundary layer
in the model could change the interior flow field.

od oh oh oh
_— — = — + = -
3 + P u(z = h) o v(z=h) > + i

x h
b vdz = 0.
-d

dy
(7.12)

8. Numerical experiments

Described below are a few of the numerical experi-
ments performed with the model in trying to understand
the circulation in the Gulf of Mexico.

a. Eddy shedding in a rectangular domain

Our first experiment is to simulate a ‘‘Loop Current’’
that sheds eddies. We use a 600 km X 400 km rectan-
gular basin centered at 25°N with a uniform depth of
1000 m and a rigid lid at the top. The basin has an inflow
on the southern boundary and outflow on the eastern
boundary where we specify parabolic velocity profiles.
The fluid is homogeneous, with no density stratification
or velocity variation in the vertical. There are no viscous
terms in the equations. We use a geostrophic flow as the
initial condition. The grid is uniform with 48 X 36 X 10
grid cells and the time step is 30 minutes.

Over a 120-day period we observe the formation of a
Loop Current and an eddy. The intrusion of the loop grows
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F1G. 6. Numerical simulation of the flat-bottomed basin shaped like the Gulf of Mexico. The horizontal velocity field is plotted on a sigma
surface. The top panel shows a surface (layer 15) near the top. The bottom panel shows a surface (layer 2) close to the bottom. (a) day 104,

time step: 3000; (b) day 208, time step: 6000;

until it becomes ox-bow shaped and pinches off into a
large anticyclonic eddy. As soon as the eddy is detached,
the flow short circuits its course directly from the entrance
to the exit. Once again, the Loop Current begins to grow
and repeat the process. Figure 3 illustrates this.

From these observations we infer that the eddy shed-
ding can occur independent of any baroclinic effects in
this geometry. The retroflection of the Loop Current
and formation of the eddy is due to the latitudinal vari-
ation of the Coriolis parameter and is explained from
potential vorticity conservation. The extent of the
loop’s intrusion and size of the eddy are independent
of the domain size as shown by Hurlburt and Thomp-
son (1980) and Reid (1972), provided the distance be-
tween the entrance and exit is sufficient to accommo-
date the loop. The size of the eddy generated in the
numerical experiments is consistent with the size esti-
mated from potential vorticity conservation theory.

b. The Gulf of Mexico

We simulate the Gulf of Mexico using a 48 X 32
X 16 size of grid. The grid spacing is thus 40—50 km

in the horizontal. In the vertical, it ranges from a min-
imum of 31.25 m on the 500-m-deep shelf to approx-
imately 220 m in the deepest portion. This resolution
is not sufficient to resolve 100 km and smaller eddies
and the flow in the narrow inflow region, but can re-
solve the Loop Current and other features of the general
circulation. The horizontal momentum equations con-
tain no viscous terms. We use a fourth-order Shapiro
(1970) filter on the vertical velocities every 25 time
steps. A time step of 50 minutes is used in the integra-
tion.

The flow observed over a period of approximately
400 days shows a general anticyclonic circulation with
several eddies forming in the central and western gulf.
Tonguelike intrusions of the Loop Current get detached
to form eddies that drift westward. Several eddies are
seen to form in cyclonic—anticyclonic pairs. The flow
distinctly follows the contours of the topography, es-
pecially where topographic gradients are steep. A strik-
ing feature is the presence of a cyclonic circulation in
the deeper layers of the gulf that follows the topo-
graphic contours very closely and is opposite in direc-
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FIG. 6. (Continued) (c) day 312, time step: 9000; and (d) day 416, time step: 12 000.

tion to the anticyclonic cell in the upper ocean. Figure
4 shows the development of this flow.

We repeat the above simulation with eddy viscosity
terms in the momentum equations and a boundary con-
dition that models the topographic drag. The eddy vis-
cosities used, vy = 100 m? s 7! in the horizontal direc-
tion and vy = 10~ m? s ! in the vertical direction, are
the same as those used by Dietrich and Lin (1994). It
is common to use horizontal and vertical eddy viscos-
ities that are 10'°~10"" and 10>-10? times the molec-
ular viscosity (cf. section 4.6 of Gill 1982). The values
used here are 10® and 10? times the molecular value
and are considered relatively small. The bottom drag is
modeled as in Casulli and Cheng (1992) using the
boundary condition

vyouldz = yu wvyovl/dz = yv,
where v = gvu? + v%/C? and the Chezy coefficient C,
is given by C, = (h + d)"®/n. Here h + d is the total
depth and », which is Manning’s constant, lies in the
range 0.01-0.02.

The circulation generated in this simulation resem-
bles the case without drag in which the difference is

that the flow is a little subdued and the Loop Current
intrusion less distinct. Figure 5 shows the results from
the simulation with the drag and viscous terms.

c. A flat-bottomed Gulf of Mexico

To examine the effect of the topography, we model
the circulation in a domain shaped like the gulf in plan
view but with a uniform depth of 1500 m. We use the
same grid size and time step as in the previous case,
leaving out the viscous terms and bottom drag.

The flow is significantly different in the absence of
bottom topography as seen from Fig. 6. The circulation
set up by the inflow does not occupy the entire basin.
Instead of one clockwise cell, two counterrotating cells
are formed in the basin. The shedding of eddies and
their westward migration is much more regular and
pronounced. We can clearly observe upwelling of cold
saline water in the anticyclonic eddies, and downwell-
ing of warm fresh water in cyclonic eddies.

Running the model in the same geometry without
density variation reveals that the eddies in the above
case are primarily due to baroclinic effects. Eddies
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formed by the retroflected current intersecting itself in
the barotropic case are much weaker.

d. Comparison of numerical results with field
observations

Our numerical simulation of the gulf reproduces the
observed anticyclonic circulation in the surface layers,
the western boundary current, and the Loop Current
that exhibits eddy shedding in the east. The most strik-
ing finding from the simulation is the strong cyclonic
circulation in the lower layers along the steeply sloping
shelf. This gyre is circulating in the opposite direction
to the commonly seen anticyclonic flow in the upper
layers. There is not much reference to this counterro-
tating gyre in the literature since most field studies are
restricted to the upper layers of the ocean. The excep-
tion is a study by Hofmann and Worley (1986), who
cite evidence for a deep cyclonic gyre in the western

-gulf and estimate its volume transport to be equal to
that of the counterrotating gyre in the upper layers.
Contour plots of the current velocity through sections
across the gulf show the direction of the velocity being
reversed at depths below 1000 m. Our numerical sim-
ulations support these findings and contradict Molinari
et al. (1978) who claim that the deep water circulates
in the same direction as in the upper layers.

The counter flowing current observed since the
1930s (cf. Hofmann and Worley 1986) inshore of the
south flowing Florida Current and along the slope of
the Florida shelf is visible in the numerical simulations
where it forms a weak eddy at times. The observed
clockwise return flow north of Cuba, the counterclock-
wise cell west of Florida, counterrotating eddy pairs in
the central and western gulf, and the cyclonic circula-
tion on the Campeche Bank north of the Yucatan are
all reproduced in our numerical simulations. The flow
on the Texas shelf observed by Nowlin and McLellan
(1967), Molinari et al. (1978), and Hofmann and Wor-
ley (1986) is attributed to river inflows and does not
show up in our simulation.

e. Comparison with other numerical studies of the
gulf circulation

We compare our observations here with those of
Hurlburt and Thompson (1980) and Dietrich and Lin
(1994) who used a horizontal resolution of 20 km in
their simulations of the gulf. We could afford a hori-
zontal resolution of only 40 km on our workstation, but
still resolved the main features. In addition, they inte-
grated their solutions for 3—5 years, while our simu-
lations have so far been carried out only for a period
of 1-1.5 years.

Hurlburt and Thompson (1980) studied the dynam-
ics of eddy shedding from the Loop Current using two-
layer, barotropic and reduced gravity free-surface mod-
els in a rectangular domain with a grid spacing of ap-
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proximately 20 km. A significant result of their study
is that the eddy shedding occurs at its own natural pe-

‘riod without any time variation in the inflow. This is in

agreement with our own observations. They found that
the eddy shedding is suppressed at low Reynolds num-
bers and reappears when the deep flow in the Yucatan
is reduced. This suggests that topographic drag may
play a role.

Dietrich and Lin (1994) modeled eddy shedding in
the gulf using a primitive equation model on a Carte-
sian grid with coastline and bathymetry. They used 16
vertical levels and a 20-km resolution in the horizontal.
They observed the western boundary current as part of
the cyclonic circulation and also observed the deeper
secondary anticyclonic circulation observed by us.
Comparing this to Hurlburt and Thompson (1980),
who use a rectangular domain, it becomes evident that
the western boundary current and deep cyclonic cir-
culation are observed only in models that take the shape
of the ocean basin into account.

The cyclonic gyre produced in the absence of any
wind stress in our simulations confirms that this large-
scale feature is not primarily wind driven as was orig-
inally proposed by Sturges and Blaha (1976).

9. Conclusions

We have combined a number of algorithmic ideas to
design an numerical solution procedure for the quasi-
nonhydrostatic mesoscale ocean model. The procedure
enables the implicit integration of the linear terms con-
stituting the faster waves, while explicitly integrating
the nonlinear terms constituting the slower waves. By
treating the free-surface terms implicitly, we are able
to choose a time step based on the fluid velocity rather
than the free-surface gravity wave speed.

The numerical solution of our quasi-nonhydrostatic
model with free surface is not much more expensive
than the solution of the conventional hydrostatic equa-
tions even though a three-dimensional elliptic equation
for pressure is solved at each stage in the time integra-
tion. This is because the directional inhomogeneity re-
sulting from near-hydrostatic balance gives a special
structure to the discretized elliptic equation. The solu-
tion of this equation is extremely fast when block re-
laxation is used within the multigrid algorithm. By us-
ing the free-surface formulation, we are thus able to
trim the bulk of the additional computational cost in-
volved with solving the elliptic equation in the non-
hydrostatic model.

The model is implemented in general boundary-fit-
ted curvilinear coordinates, has a moving top boundary
and uses cell-centered variables. It satisfactorily sim-
ulates the flow in the Gulf of Mexico with its topo-
graphic variations. The results qualitatively compare
with the numerical and field observations of other au-
thors. Our numerical experiments reveal that the to-
pography of the basin is largely responsible for the cir-
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culation pattern being what it is. The free-surface ele-
vation field developed due to the inflow and outflow
and the shape of the basin are responsible for a clock-
wise circulation that follows the topographic contours.
The direction induced by the topographic slope is, how-
ever, opposite to that induced by the free-surface tilt,
and the direction of flow in the lower layers of the
boundary current is anticlockwise and opposite in di-
rection to that of the top layers. Intrusions of the Loop
Current periodically pinch off to form eddies as they
do in the gulf. The eddies migrate westward as Rossby
waves. The model exhibits the baroclinic instability as
well as upwelling and downwelling in clockwise and
counterclockwise eddies.

Since the model is able to run for long periods with-
out an eddy viscosity term in the horizontal momentum
equations, we conclude that numerical viscosity, along
with some filtering of the the vertical velocities, is suf-
ficient to dissipate the subgrid-scale energy. Any fur-
ther subgrid-scale parameterization may be included in
the model, though it is questionable as to whether it is
necessary.

The model performs smoothly when either the pres-
sure or the normal velocity are specified at the outflow.
When using these equations with the correct boundary
conditions, it is unnecessary to use a sponge layer or
enhanced viscosity at the inflow and outflow as is cus-
tomary in primitive equation models.

The numerical solution of the equations is shown to
be viable at a cost not much more than that of solving
the hydrostatic equations.

By comparing solutions obtained with different val-
ues of the relaxation parameter 3, we verify that the
solution is not sensitive to a particular value of £, and
that the relative error is indeed O(8 ") as indicated by
the scaling analysis.

10. Future work

The model developed could be used to study meso-
scale processes and the effect of various factors on
them. Additional factors such as wind stress and sur-
face fluxes of heat and salt can easily be built into the
model. The use of a stretched grid in the vertical would
be appropriate to better resolve the density structure.
Using realistic forcing, initial conditions and boundary
data, we could make predictions of the flow field in the
Gulf of Mexico or any other ocean. These could be
compared to field observations as a means of evaluating
the model.

What ocean modelers would most like to see is a
comparison of the results from this model with those
from one of the conventional hydrostatic models in use
today. This sort of comparison would make sense only
if both sets of model equations were solved in exactly
the same numerical framework. This is difficult to
achieve given that the hydrostatic model would need
viscous terms, a buffer region outside the open bound-
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aries, and different boundary conditions. Since we be-
lieve that this model is capable of predicting vertical
velocities more accurately than the hydrostatic equa-
tions, we can use the computed vertical flux as a means
of comparison. In an ongoing study that examines the
role of mesoscale phenomena in vertically transporting
nutrients for biological production, we are quantifying
the amount of nutrient transported using this model, as
well as from using the flow fields from the Semtner and
Chervin (1992) model for comparison.

The model could be nested within a composite-adap-
tive grid framework to enable modeling more complex
geometries, while locally resolving features in the flow
when and where needed. It may be embedded in a
global circulation model that would supply the bound-
ary conditions for some region in which the mesoscale
flow needs to be well resolved. This work was done
while A.M. was at Stanford University.
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